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Design of Optimal Finite Wordlength FIR Digital
Filters Using Integer Programming

Techniques

DUŠAN M. KODEK, MEMBER, IEEE

Abstract— The application of a general-purpose integer-programming
computer program to the design of optimal finite wordlength FIR dig-
ital filters is described. Examples of two optimal low-pass FIR finite
wordlength filters are given andthe results are compared with the re-
sults obtained by rounding the infinite wordlength coefficients. An
analysis of the approach based on the results of more than 50 design
cases is presented and the problem of optimal wordlength choice is
discussed.

I. INTRODUCTION

WHEN digital filters are implemented on a computer or
with special-purpose hardware, each filter coefficient

has to be represented by a finite number of bits. The simplest
and most widely used approach to the problem is the rounding
of the optimal1 infinite precision coefficients to its b-bit rep-
resentation. Several authors [1], [2] analyzed the effect of co-
efficient quantization on the frequency response of FIR filters.
Statistical bounds on the error thus incurred were developed
and verified by experimental data. It is now readily possible
using these bounds to design FIR filters with finite wordlength
coefficients.

However, the filters so obtained are not optimal anymore
and in most cases there exists another set of finite wordlength
coefficients which gives the best Chebyshev approximation to
the desired frequency response. To find this set of coefficients
it is necessary to include the finite wordlength restriction into
the filter design procedure. The original problem of continuous
optimal Chebyshev approximation becomes a much more com-
plex discrete optimization problem. The standard methods of
optimal FIR digital filter design, namely the Remez algorithm
[3] and linear programming [4], do not work when the finite
wordlength restriction is imposed, and one is forced to search
for other methods.

Several authors [5]–[8], [15]–[19] have investigated the
possibility of using suboptimal algorithms which systematically
improve the coefficients obtained by the rounding of optimal
infinite precision coefficients. They show that with these algo-
rithms it is possible to considerably improve the rounded solu-
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1Throughout this paper the word optimal is used in a Chebyshev, or
minimax, sense.

tion. Still, there are two important limitations of all these
methods:

1) they are successful only for filters with a small number
of coefficients (typically less than 10) and are therefore not
well suited for the design of FIR digital filters; and

2) the solution obtained is suboptimal in most cases; even
if it is optimal there is no proof of optimality and the designer
is not aware that the optimal solution has been reached.

At present, the only known general way of producing the
optimal finite wordlength FIR filter coefficients is by using
the methods of mixed integer programming. These methods
are well described in the literature (see, for example, [9],[10])
and there are several general-purposecomputer programs which
include integer programming algorithms. These programs are
usually extensions of linear programming programs and can be
used in much the same way as standard linear programming
packages.

Application of general-purpose integer-programming com-
puter programs to the design of optimal finite wordlength FIR
digital filters is in many respects similar to application of linear
programming techniques to the design of “infinite precision”
FIR digital filters. It is therefore surprising that there are prac-
tically no papers2 which would describe the use of integer pro-
gramming programs for finite wordlength FIR design. These
programs are by no means perfect for this purpose. Neverthe-
less, they produce the desired results and give insight into
the somewhat obscure nature of optimal finite wordlength FIR
filters.

II. STATEMENT OF THE PROBLEM

Using the standard notation [11], we write the frequency
response H(f) of an N length finite wordlength FIR linear
phase digital filter as

H(f) =

N−1
∑

k=0

h(k)e−j2πkf (1)

where h(k), k = 0, 1, · · · , N − 1, are b-bit (sign bit included)
filter coefficients. It can be shown [3], [11] that H(f) can
always be written as

2The author has recently become aware of a paper [14] in which op-
timal CCD transversal filters were designed using mixed-integer pro-
gramming techniques.
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H(f) = G(f) exp

[

j
Lπ

2
−

(N − 1)

2
2πf

]

(2)

where G(f) is a real valued function and L = 0 or 1. There are
exactly four cases of function G(f) which can be expressed in
the terms of b-bit coefficients h(k) as

Case 1: N odd, L = 0

G(f) = h(n) +

n
∑

k=1

h(n − k)2g(kf), n = (N − 1)/2 (3)

g(k, f) = cos(2πkf).

Cases 2, 3, and 4: N even, L=0; N odd, L=1; N even, L=1

n = N/2 N even
G(f) =

n
∑

k=1

h(n − k)2g(kf),
n = (N − 1)/2 N odd

g(k, f) = cos(2π(k −
1

2
)f), N even, L = 0

g(k, f) = cos(2πkf), N odd, L = 1

g(k, f) = cos(2π(k −
1

2
)f), N even, L = 1. (4)

The optimal b-bit wordlength linear-phase FIR filter design
problem can now be stated as follows: given the number of
bits b, the desired frequency response D(f), and a positive
weight function W (f), both continuous on a compact subset
F ⊂ [0, 1

2 ], and one of the four forms of G(f), find the set of
b-bit coefficients h(n) which minimizes the maximum-weighted
absolute error defined as

‖ E(f) ‖= max
f∈F

W (f) | D(f) − G(f) | . (5)

It is instructive to compare this design problem with an in-
finite precision one. The inclusion of the b-bit restriction into
the design problem formulation may not seem very severe at
first. And indeed, one may even think that it might simplify
the procedure since it is now obviously possible to enumerate
all possible filters. It is, however, easy to see that such an ap-
proach fails even for a very small number of coefficients. It is
also easy to see that it now becomes impossible to apply the
Remez algorithm to the minimization of (5) since the alterna-
tion theorem does not hold anymore. Linear programming
cannot be applied either since it does not allow the inclusion
of b-bit coefficient constraints.

It is not the purpose of this paper to go into the intricate
mathematical details of finding solutions to the above problem.
Instead we shall use a general-purpose integer-programming
package, which requires the following equivalent formulation
of the problem [4]:

minimize E subject to constraints

h(n) +

n
∑

k=1

h(n − k)2g(kf)− E/W (f) ≤ D(f)

f ∈ F (6)

−h(n) −
n

∑

k=1

h(n − k)2g(kf) − E/W (f) ≤ −D(f)

and

h(k), k = 0, 1, · · · , n b-bit numbers (sign included).

We used form (3) of G(f) to illustrate the problem. Each of
the b-bit coefficients h(k) is a b-bit binary number which can
occupy one of the 2b different values linearly distributed be-
tween some lower and upper bound. But since it is known
that | h(k) |≤ 1, k = 0, 1, · · · , n, for all nonamplifying (out-
put power lower or equal to input power) digital filters, we
can without loss of generality express h(k) as multiples of
2−(b−1) bounded by

0 ≤| h(k) |≤ (2b−1 − 1)2−(b−1), k = 0, 1, · · · , n. (7)

Most of the integer-programming computer programs require
that the discrete variables are nonnegative bounded integers.
We shall therefore introduce substitution

h∗(k) ∈ 2b−1(h(k) + 1), k = 0, 1, · · · , n (8)

and replace the formulation (6) by

minimize E subject to constraints

h∗(n) +
n

∑

k=1

h∗(k − n)2g(kf) − E2b−1/W (f)

≤ 2b−1(D(f) + 1 +

n
∑

k=1

2g(kf)) f ∈ F

−h∗(n) −

n
∑

k=1

h∗(k − n)2g(kf)− E2b−1/W (f)

≤ −2b−1(D(f) + 1 +

n
∑

k=1

2g(kf)) (9)

and

h∗(k) ∈ (1, 2, 3, · · · , 2b − 1), k = 0, 1, · · · , n.

It is easy to see the equivalence of formulations (5), (6), and
(9). The integers h∗(k) which minimize (9) produce through
(8) rationale h(k) which minimize (6) and (5), and vice versa.
We could also use the form (4) instead of (3) and show that
the development applies to all four cases of FIR filters.

III. DESCRIPTION OF COMPUTER IMPLEMENTATION

The MPOS (multipurpose optimization system) program on
CDC Cyber 72 was used for solving the problem (9). We also
used the program of McClellan, Parks, and Rabiner [11] for
generating the constraints in (9), using the same frequency grid
F , and for comparison purposes. In fact, we added two addi-
tional subroutines into this program. The first subroutine gen-
erates the data file for MPOS. The data file is actually the
formulation (9) written in the format required by MPOS. The
second subroutine generates the program file for MPOS. The
program file defines the type of the problem (mixed integer,
minimize), chooses one of three available algorithms, and speci-
fies the data file.

The same set of input data as in [11], with the addition of
a number of bits b as the sixth parameter on the first card, was
used. Parameter JPUNCH was used to choose one or none of
the three MPOS algorithms. A typical run would produce a
printout of infinite precision coefficients, b-bit rounded coeffi-
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Fig. 1. Magnitude response and coefficients for N = 21, b = 7 low-pass
filter.

Optimal 7 bit coefficients multi- Rounded 7 bit coefficients multi-
plied by 26 = 64: plied by 26 = 64:

h(0) = 2 = h(20) h(0) = 3 = h(20)
h(1) = 0 = h(19) h(1) = 0 = h(19)
h(2) = -2 = h(18) h(2) = -2 = h(18)
h(3) = -1 = h(17) h(3) = -1 = h(17)
h(4) = 2 = h(16) h(4) = 2 = h(16)
h(5) = 3 = h(15) h(5) = 3 = h(15)
h(6) = -3 = h(14) h(6) = -3 = h(14)
h(7) = -6 = h(13) h(7) = -6 = h(13)
h(8) = 3 = h(12) h(8) = 3 = h(12)
h(9) = 20 = h(11) h(9) = 20 = h(11)

h(10) = 28 h(10) = 29

cients, and b-bit optimal coefficients. The latter one was ex-
tracted from the MPOS output by a special program.

IV. RESULTS

More than 50 optimal b-bit wordlength FIR digital filters
were synthesized. As expected, the run time was very un-
predictable and in some cases up to several hundred times
longer than the run time for an equivalent infinite precision or
rounded case.

Among three algorithms provided by MPOS, the branch
and bound algorithm was by far the most successful one.3 The
other two algorithms, Direct Search 0-1 and Gomory, failed in
most cases and were abandoned after initial attempts.

Due to the memory constraints on our particular machine it
was possible to design only filters up to length 40 (with grid
density LGRID = 8). This limitation was not a major problem
in this work. It was much more difficult to provide the huge
amounts of computer time that were necessary for this project.

Most of the design cases (all mentioned in this paper) were
done for the low-pass filters defined as

passband D(f) = 1, W (f) = 1, 0 ≤ f ≤ 0.20

stopband D(f) = 0, W (f) = 1, 0.25 ≤ f ≤ 0.5. (10)

3Given enough computer time, the branch and bound algorithm was
successful in all design cases.

Fig. 2. Magnitude response and coefficients for N = 40, b = 10 low-pass
filter.

Optimal 10 bit coefficients multi- Rounded 10 bit coefficients multi-
plied by 29 = 512: plied by 29 = 512:

h(0) = 2 = h(39) h(0) = 1 = h(39)
h(1) = 2 = h(38) h(1) = 4 = h(38)
h(2) = -1 = h(37) h(2) = -2 = h(37)
h(3) = -4 = h(36) h(3) = -4 = h(36)
h(4) = 0 = h(35) h(4) = 0 = h(35)
h(5) = 6 = h(34) h(5) = 6 = h(34)
h(6) = 1 = h(33) h(6) = 2 = h(33)
h(7) = -8 = h(32) h(7) = -7 = h(32)
h(8) = -5 = h(31) h(8) = -5 = h(31)
h(9) = 8 = h(30) h(9) = 8 = h(30)

h(10) = 10 = h(29) h(10) = 10 = h(29)
h(11) = -9 = h(28) h(11) = -8 = h(28)
h(12) = -17 = h(27) h(12) = -17 = h(27)
h(13) = 5 = h(26) h(13) = 5 = h(26)
h(14) = 27 = h(25) h(14) = 27 = h(25)
h(15) = 2 = h(24) h(15) = 3 = h(24)
h(16) = -43 = h(23) h(16) = -44 = h(23)
h(17) = -25 = h(22) h(17) = -24 = h(22)
h(18) = 92 = h(21) h(18) = 92 = h(21)
h(19) = 211 = h(20) h(19) = 212 = h(20)

Figs. 1 and 2 show specific examples of the use of the design
program for N = 21, b = 7 and N = 40, b = 10 filters. These
particular examples were reported in [12] and the comparison
with the filters with rounded coefficients reveals a consider-
able improvement.4

It is also interesting to observe the closeness between the op-
timal and rounded coefficients. This observation was typical
for all design cases and the difference between the optimal and
rounded coefficients multiplied by 2b−1 was never greater
than 4 for all N between 6 and 40 and all b between 3 and 15.

V. OPTIMAL WORDLENGTH CHOICE

During the implementation of a digital filter, one is often in-
terested in the following question: given the desired frequency
response, it is better to implement the filter with a small numb-
er of bits b and a large number of coefficients N , or vice versa?

4A comparison with suboptimal search algorithms is given in [20].
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Fig. 3. Relationship between δ, N , and b for 36 low-pass filters speci-
fied by (10).

The answer will not only depend on the particular type of im-
plementation, but also on the relation between b and N . We
shall try to given some insight into this relation.

Let us first look at the case of filters with rounded coeffi-
cients. Using the approximate design formula for optimal
infinite-precision low-pass FIR filters [13] and a statistical
upper bound for error caused by the rounding [1], it is pos-
sible to get an approximate relationship between deviation
δ =max |D(f)−G(f) |, number of coefficients N , and coeffi-
cients wordlength b. For the filters defined in (10) the transi-
tion band ∆F equals 0.05 and we would have

δ ≈ 2−(b−1)

√

2N − 1

3
+ δ∞ (11)

where δ∞ is the infinite precision deviation which can be cal-
culated from the formula

(N − 1)∆F ≈0.005309(log10 δ∞)3 + (0.07114− 0.00266)

· (log10 δ∞)2 + (−0.4761− 0.5941) log10 δ∞

−0.4278− 11.012(∆F )2. (12)

The formula (12) becomes inaccurate for δ∞ >0.1 and the cor-
rection suggested in [13] can be used in these cases.

No such relationship is known for optimal finite wordlength
FIR filters. Since we know very little about the properties of
these filters and since the attractive idea of a very short word-
length implementation, which is obviously impossible in the
rounded case, seems feasible in the optimal case, we decided to
study the relationship experimentally.

Fig. 3 shows the experimentally obtained relationship
between δ , N , and b for 36 optimal finite wordlength low-pass
FIR filters defined in (10), and for the equivalent filters with
rounded coefficients. The values of N and b were chosen for 5
different values of product Nb. One could of course argue
against the choice of Nb as a parameter since it is not the best

criterion of hardware complexity. However, it was chosen be-
cause of the following.

1) The product Nb gives the number of bits that describe the
filter and thus serves as a measure of information capacity of
the filter.

2) It is convenient for computation purposes and allows an
easy comparison with other criteria.

The results in Fig. 3 reveal that there is an optimal number
of bits b for each value of Nb. It is interesting to compare
these results with the results for equivalent rounded filters.
The comparison shows that the optima move approximately
one bit to the right in the rounded case and that the deviation
predicted by (11) and (12) agrees closely with the measured
values.

The results also indicate that it is probably not possible, in
general, to substitute a small number of bits in coefficients by
a higher number of coefficients and produce the same devia-
tion. Several separate experiments confirmed this result but at
the moment it is still too early to give a definite conclusion.

VI. CONCLUDING REMARKS

The results presented show that it is possible, in general, to
design optimal finite wordlength FIR filters using general-
purpose integer-programming techniques. The branch and
bound algorithm proved to be successful in solving the ap-
proximation problem. It is, however, also very costly in terms
of computer time and there is no doubt that better, more effi-
cient methods will have to be found in order to make optimal
finite wordlength FIR filters attractive to designers.
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