
int. j. prod. res., 1 december 2004,
vol. 42, no. 23, 5031–5048

Optimal algorithm for minimizing production cycle time of a printed

circuit board assembly line

D. M. KODEK* and M. KRISPER

The problem of the optimal allocation of components to a printed circuit
board assembly line will several non-identical placement machines in series is
considered. The objective is to achieve the highest throughput by minimizing
the production cycle time of the assembly line. This problem can be formulated
as a minimax approximation integer programming problem that belongs to the
family of scheduling problems. The difficulty lies in the fact that this problem is
proven to be NP-complete. All known algorithms are exponential and work only
if the number of variables is reasonably small. This particular problem, however,
has properties that allow the development of a very efficient type of branch-and-
bound-based optimal algorithm that works for problems with a practically useful
number of variables. Detailed description of the algorithm is given together with
examples that demonstrate its effectiveness.

1. Introduction

In a printed circuit board (PCB) assembly line, the boards usually travel on a
conveyer belt through a line of component placement machines, each placing a
number of components on the circuit board. Assuming this type of production
set-up, the planning decisions can be divided into the following two subproblems
(Ammons et al. 1997):

(1) Component allocation: decide which component types are placed by which
machine.

(2) Feeder arrangement and placement sequencing: stage component feeders
on each machine and sequence the placement operations for each machine
and card type.

These subproblems are not completely independent. The placement time
provided by a machine’s manufacturer is usually the fastest time with which a
component type can be placed. These times are not always realized because of
latency, which is determined by the feeder arrangement and placement sequencing.
Of course, feeder arrangement and placement sequencing cannot be decided without
component allocation. Clearly, there is a circular interaction between the subprob-
lems. The typical strategy (Askin et al. 1994, DePuy et al. 1997, Schtub and Maimon
1992) is to first solve the component allocation problem and then solve the feeder
arrangement/placement sequencing problem.

Revision received June 2004.
Faculty of Computer Information Science, University of Ljubljana, Tras̆ka 25, 1000

Ljubljana, Slovenia.
*To whom correspondence should be addressed. E-mail: duke@fri.uni-lj.si

International Journal of Production Research ISSN 0020–7543 print/ISSN 1366–588X online # 2004 Taylor & Francis Ltd

http://www.tandf.co.uk/journals

DOI: 10.1080/00207540412331285814

This paper only addresses the problem of optimal component allocation. This
problem is NP-complete and is often considered too difficult to solve optimally in

practice. This opinion is supported by the experience with the general integer
programming software that is typically very slow and does not produce solutions
in a reasonable time. It is therefore not surprising to see attempts of replacing the

optimal solution with a near-optimal one (Ji et al. 2001, Kim et al. 1996). The
reasoning is as follows. A near-optimal solution is often good enough and is usually
obtained in a significantly shorter time than the optimal solution. Although this is

true in many cases, it does not hold always. One difficulty with the near-optimal
methods is that, as a rule, they do not give an estimate of closeness to the optimal
solution. This means that a significantly better optimal solution, about which the

user knows nothing, may exist.
The paper presents a new optimal algorithm that takes advantage of the special

properties of the minimax approximation allocation problem. This algorithm is

much faster than the general integer programming approach mentioned above.
It finds, in many practical cases, the optimal solution in a time similar to the time
needed for near-optimal methods. Because of NP-completeness, it will not find the

optimal solution for the cases with a large number of variables, but it always
produces near-optimal solutions that can be used in such cases.

2. Formulation of the problem

There are two important differences between the traditional assembly line prob-
lem and the PCB component allocation problem. First, unlike the traditional

assembly line, the precedence of operations in the PCB assembly is generally not
important and will be ignored. The second difference concerns the assembly times for
the same component on different machines. Due to various types and configurations

of the placement machines, different machines have different times for placement of
the same kind of component.

An example from table 1 describes a PCB assembly line with three different

placement machines M1, M2, M3 and a board with 10 types of components.
The placement times tij for different components and machines are also given. If a
machine cannot handle a particular type of component, its placement time is
assigned to be infinite (1). The infinity is used here for simplicity of notation

only — it is replaced by a large positive number for computation. In addition to
the time needed to place a component, there is also a set-up time si for each of the

Placement times tij for component type j

Set-up time siMachine Mi 1 2 3 4 5 6 7 8 9 10

1 0.3 0.7 0.7 0.5 1 1 1 0.6 0.5 1 5.0
2 0.7 1.2 1.5 1.6 1.5 1.8 1.9 1 0.7 1.9 6.7
3 1.7 2.3 2.2 2.4 1.9 1.5 2.0 2.5 1 1.8 7.8
Number cj of
components 162 90 51 30 22 16 12 9 7 5

Table 1. Example of a PCB assembly line with three different placement machines and
10 different component types per board. The placement times tij for different
component and machines and the setup times si are in seconds.

5032 D. M. Kodek and M. Krisper

machines Mi. Finally, a total number of each type of a component per board cj is
given.

Obviously, there are many possible ways of allocating the components j to
the placement machines Mi. The question is how to allocate the components in
such a way that the assembly line has the best performance. The PCB assembly
line cycle time T is formally defined as the maximum time needed by one of
the machines Mi, i ¼ 1, 2, . . . ,m, to complete the placement of the components
allocated to it.

Suppose that there are m non-identical placement machines Mi in a PCB
assembly line and that a board with n types of components is to be assembled on
this line. The component allocation problem can be formally defined as

Topt ¼ min
xij

max
i¼1, 2,...,m

si þ
Xn
j¼1

tijxij

 !
, ð1Þ

subject to Xm
i¼1

xij ¼ cj, j ¼ 1, 2, . . . , n, ð2Þ

xij � 0 and integer: ð3Þ

The solution is the optimal cycle time Topt and the optimal allocation variables x
ðoptÞ
ij .

The variable xij gives the number of components of type j allocated to machine Mi.
Constraints (2) ensure that all of the components will be allocated. The components
are indivisible and (3) ensures that xij are positive integers. Note that we ignore the
feeder capacity limits and other machine constraints.

It is the integer constraint on xij that makes the problem (1–3) difficult. Solving it
without this constraint is quite simple, even for a very large number of variables xij.
Rounding the non-integer xij to the nearest integers is certainly a plausible strategy
and is used in practice. There are, however, limitations to this approach.
A significantly better solution may exist and it is not known how close to the optimal
solution the rounded one is.

3. Complexity of the problem

Problem (1–3) is a combination of assignment and flowshop scheduling problems
(Brucker 1998) and is NP-complete for n � 2. Proving the NP-completeness is
not too difficult. First, it is trivial to show that the problem is in P. Second, it is
possible to show that the well known PARTITION problem can be polynomially
transformed into (1–3) (Vilfan 2002). Since PARTITION is NP-complete, so is our
problem.

A typical approach to solving this problem is to treat it as a general mixed-integer
linear programming problem. The minimax problem (1–3) is reformulated as

min
xij

Topt,

Topt � si �
Xn
j¼1

tijxij � 0, i ¼ 1, 2, . . . ,m,

Xm
i¼1

xij ¼ cj, j ¼ 1, 2, . . . , n,

xij � 0 and integer:

ð4Þ

5033An optimal algorithm

All algorithms capable of solving this problem optimally work by starting with the
non-integer problem where the variables xij can be any positive real number.
Additional constraints are then gradually introduced into the problem and these
constraints eventually force the variables xij to integer values. Many instances of
suitably reformulated subproblems of the form (4) must be solved before the optimal
solution is found.

An advantage of formulation (4) is that general mixed-integer programming
software can be used to solve it. Unfortunately, this advantage occurs at the expense
of computation time. The general software uses the simplex algorithm to solve the
subproblems. The simplex algorithm is very general and slow since it does not use
any of the special properties of the minimax problem. All these properties are lost
if the original problem (1–3) is converted into the general problem.

It is the purpose of this paper to develop an optimal algorithm that does not
use the generalized formulation (4). The algorithm takes advantage of the special
properties of the minimax problem (1–3) and avoids using the simplex algorithm
completely.

4. Lower bound theorem

The basic idea of our algorithm is to use a lower bound for Topt as a tool that
leads to the solution. This lower bound must be computed for each of the subprob-
lems that appear within the branch-and-bound process. It must take into account the
fact that some of the subproblem’s variables xij are known integers. To derive it,
assume that the subproblems’s variables xij , j ¼ 1, 2, . . . , k� 1, are known integers
for all i. In addition, some, but not all, of the variables xik may also be known
integers. Let Ik be the set of indices i that correspond to the known integers xik.
The subproblem’s variables can be formally described as

xij ¼

xIij, j ¼ 1, . . . , k� 1, i ¼ 1, . . . ,m

xIij, j ¼ k, i 2 Ik
xij, j ¼ k, i 62 Ik
xij, j ¼ kþ 1, . . . , n, i ¼ 1, . . . ,m,

8>><
>>: ð5Þ

where k can be any of the indices 1, 2, . . . , n. Notation xIij is used to describe
the variables that are already known integers. The remaining variables xij are not
yet known. The number of indices in the set Ik lies in the range 0 to m� 2. If there
were m� 1 known integers xIik the constraint (2) gives the remaining variable which
contradicts the assumption that not all of the variables xik are known. The index
k changes to kþ 1 when all xik are known integers.

Definition (5) assumes that a certain rule is used to introduce the constraints,
which force the variables xij to integer values. This rule is simple: for every index k,
it is necessary to constrain xik to known integers xIik for all i, i ¼ 1, 2, . . . ,m, before
k can change. The rule follows from the structure of constraints given by (2) and
is needed to derive the lower-bound theorem. There is no problem with this rule
because the branch-and-bound method on which our algorithm is based allows
complete freedom of choosing the variable xij that is next to be constrained.
The indices k can be selected in any order. A simple ascending order
k ¼ 1, 2, . . . , n, is used in (5). This also applies to the case when the problem is
first reordered along the indices j in a way that gives the fastest rate of lower
bound increase. Such a reordering is used in our algorithm.

5034 D. M. Kodek and M. Krisper

To simplify the notation, let us first use the known integers xIij and redefine
si as s0i

s0i ¼

si þ
Xk
j¼1

tijx
I
ij , i 2 Ik

si þ
Xk�1
j¼1

tijx
I
ij, i 62 Ik:

8>>>><
>>>>:

ð6Þ

Similarly, the known integers xIik (if any) are used to redefine ck as c0k

c0k ¼ ck �
X
i2Ik

xIik: ð7Þ

The lower bound on Topt over all possible not yet known variables xij is the most
important part of our algorithm. It is developed along the lines used in a related
integer polynomial minimax approximation problem that appears in a digital filter
design (Kodek 1998, 2002) and is given in the following theorem.

Theorem 1: Let Topt be the minimum cycle time corresponding to the optimal solu-
tion of the problem (1–3) in which some of the variables are known integers defined
by (5). Then Topt is bounded by

Topt � max
j¼kþ1,..., n

cj þ
Xm
i¼1

s0i
tij
þ pj þ qj

Xm
i¼1

1

tij

0
BBBB@

1
CCCCA ð8Þ

where

pj ¼
Xn

r¼kþ1 r 6¼j

cr min
i¼1, 2,...,m

tir
tij

� �
,

qj ¼ c0k min
i 62Ik

tik
tij

� �
, j ¼ kþ 1, . . . , n:

ð9Þ

Proof: Let h be a number that satisfies

h �

si þ
Xk
j¼1

tijx
I
ij þ

Xn
j¼kþ 1

tijxij , i 2 Ik

si þ
Xk�1
j¼1

tijx
I
ij þ

Xn
j¼k

tijxij , i 62 Ik:

8>>>>><
>>>>>:

ð10Þ

Note that h is a lower bound for Topt if we can prove that (10) holds over all possible
not yet known xij . Using (6) equation (10) is simplified

h �

s0i þ
Xn

j¼kþ 1

tijxij , i 2 Ik

s0i þ
Xn
j¼k

tijxij, i 62 Ik:

8>>>><
>>>>:

ð11Þ

5035An optimal algorithm

It follows from (11) that variables xij can be expressed as

xij �
h

tij
�

s0i
tij
�

Xn
r¼kþ 1
r 6¼j

tir
tij
xir, i 2 Ik, j ¼ kþ 1, 1, . . . , n,

xij �
h

tij
�

s0i
tij
�
Xn
r¼k
r6¼j

tir
tij
xir, i 62 Ik, j ¼ k, . . . , n: ð12Þ

Adding all xij by index i and using (2) and (7) gives

cj �
Xm
i¼1

h

tij
�
Xm
i¼1

s0i
tij
�
Xn
r¼kþ1
r 6¼j

Xm
i¼1

tir
tij
xir �

X
i 62Ik

tik
tij

xik, j ¼ kþ 1, . . . , n, ð13Þ

and the lower bound for h can now be written as

h �

cj þ
Pm

i¼1 ðs
0
i=tijÞ þ

Pn
r¼kþ1
r 6¼j

Pm
i¼1 ðtir=tijÞxir þ

P
i 62Ik
ðtik=tijÞxikPm

i¼1 ð1=tijÞ
, j ¼ kþ 1, . . . , n:

ð14Þ

All the terms in (14) are positive. This means that h is a lower bound over all
variables if the lowest possible values of the terms containing variables xir and xik
are used. The variables xir are subject to

Xm
i¼1

xir ¼ cr, r ¼ kþ 1, . . . , n: ð15Þ

It is quite easy to see that the sum containing xir is bounded by

Xn
r¼kþ1
r6¼j

Xm
i¼1

tir
tij
xir �

Xn
r¼kþ1
r6¼j

cr min
i¼1, 2,...,m

tir
tij

� �
¼ pj, j ¼ kþ 1, . . . , n, ð16Þ

since it is obvious that a minimum is obtained if xir is given the value cr for index i
that corresponds to the lowest of the factors tir=tij while all other xir are set to zero.
Similarly, the variables xik are subject toX

i 62Ik

xik ¼ c0k, ð17Þ

and the sum containing xik is bounded byX
i 62Ik

tik
tij

xik � c0k min
i 62Ik

tik
tij

� �
¼ qj, j ¼ kþ 1, . . . , n: ð18Þ

Equations (16) and (18) are used in the definitions (9) and this completes the
proof. œ

Note that Theorem 1 does not include the lower bound for the case k¼ n. The
following trivial lower bound, which is valid for all k, can be used in this case

Topt � max
i =2 Ik

s0i þ tikxik
� �

, k ¼ 1, . . . , n: ð19Þ

5036 D. M. Kodek and M. Krisper

Note also that index j¼ k was not used in the derivation of Theorem 1. It is possible
to derive the equivalent of (13) for j¼ k and the corresponding lower bound.
Its contribution to the total lower bound was found to be negligible and it is not
used in our algorithm.

By choosing k¼ 0, one can use (8–9) to compute the lower bound over all possible
integers xij . Applying this to the example from table 1 gives Topt � 111:736, which
can be rounded up to 111.80 because Topt must be an integer multiple of 0.1.
This lower bound is not far from Topt ¼ 112:50. But there is more — the theorem
plays a central role in our algorithm because it eliminates the need to use the simplex
algorithm for solving the subproblems within the branch-and-bound process.

5. Application of the lower bound theorem

The usefulness of Theorem 1 is based on the following observation: the problem
of finding the all-integer solution that gives the lowest cycle time Topt can be replaced
by the problem of finding the all-integer solution that has the lowest lower bound
for Topt. Both approaches obviously lead to the same solution since Topt equals its
lower bound when all variables xij are integers.

This observation, however, is not sufficient. A new constraint must be introduced
on one of the variables xik, i 62 Ik, at each branch-and-bound iteration. This con-
straint cannot be made on the basis of Theorem 1 alone and requires additional
elaboration.

To see how the lower bound depends on xik, let us define the parameters TLð j, kÞ as

TLð j, kÞ ¼

cj þ
Xm
i¼1

ðs0i=tijÞ þ pj þ
X
i 62Ik

ðtik=tijÞxik

Xm
i¼1

ð1=tijÞ

, ð20Þ

where j ¼ kþ 1, . . . , n, and k ¼ 1, . . . , n� 1. TLð j, kÞ is simply (14) rewritten in
a slightly different way. The Theorem 1 lower bound (8), in which the variables
xik are used explicitly (instead of factors qj), is now equal to

Topt � max
j¼kþ1,..., n

TLð j, kÞ: ð21Þ

This lower bound does not include case k¼ n. This is easily corrected if (19) is
included. To simplify notation we first define parameters TI (i, k) as

TI ði, kÞ ¼ s0i þ tikxik, k ¼ 1, . . . , n, ð22Þ

and define the new lower bound Topt � TLBðkÞ

TLBðkÞ ¼ max max
i =2 Ik

TI ði, kÞ, max
j¼kþ1,..., n

TLð j, kÞ

� �
: ð23Þ

TLBðkÞ is defined for k ¼ 1, . . . , n (where TLð j, nÞ ¼ 0). It includes, TI (i, k) for all
k even if it is strictly needed only for k¼ n. There is a good reason for that because
theTI lower bound sometimes exceeds theTL lower bound. This can occur when the tij
differ by several orders of magnitude as is the case of example from table 1 where
a large positive tij is used instead of 1. Although the algorithm works if TI is used
for k¼ n only, experiments show that it is usually faster if it is used for all k.

5037An optimal algorithm

The lower bound TLBðkÞ (23) is the basis of our algorithm. It is a linear function
of the variables xik, i 62 Ik, and, as mentioned before, a new constraint must be
introduced on one of them at each branch-and-bound iteration.

Let ic, ic 62 Ik, be the index of the variable xick that is selected for constraining.
Selection of the index ic is simple — any of the indices i, i 62 Ik, can be used as ic.
It is more difficult to find the x�ick that will be used in the branch-and-bound iteration
to constrain the selected variable to integers xIick, which are the nearest lower and
upper neighbours of x�ick. x

�
ick

must be a number that gives the lowest possible lower
bound TLBðkÞ over all possible values of the not yet known variables xik, i =2 Ik,
and xij , i ¼ 1, . . . ,m, j ¼ kþ 1, . . . , n. Or in other words, x�ick must be at the global
minimum of TLBðkÞ.

It is important to understand why x�ick must be at the global minimum of TLBðkÞ.
It must be because our algorithm uses the property that TLBðkÞ is a linear function of
the variables xik and is therefore also convex. The convex property is crucial for the
success of our algorithm since it ensures that every local optimum is also global. The
algorithm uses this property by stopping the search along a variable in the branch-
and-bound process when TLBðkÞ exceeds the current best solution Tu. This, however,
can be used only if x�ick is such that TLBðkÞ does not decrease when an arbitrary
integer is added to x�ick. The x

�
ick

at the globalminimum certainly satisfies this condition.
A great advantage of using the lower bound comes from the fact that TLBðkÞ

in (23) depends only on the variables xik, i 62 Ik, and is independent of the remaining
variables xij, i ¼ 1, . . . ,m, j ¼ kþ 1, . . . , n. This means that the number of variables
is significantly reduced in comparison with the general approach (5). Solution of the
minimax problem

T�LBðkÞ ¼ min
xik
i 62Ik

max max
i =2 Ik

TI ði, kÞ, max
j¼kþ1,..., n

TLð j, kÞ

� �
, ð24Þ

X
i 62Ik

xik ¼ c0k, xik � 0, ð25Þ

gives the non-negative numbers x�ik that give the global minimum T�LBðkÞ for a
given k.

A complication arises when k changes to kþ 1 because the solution of (24–25) for
kþ 1 depends not only on x�ikþ1, but also on x�ik (through s0i). The problem is that x�ik
is not necessarily at the global minimum of TLBðkþ 1Þ. It is possible that the mini-
mum of (24) for kþ 1 decreases if different x�ik are used. An error can occur if this
is ignored because the algorithm stops the search along a variable if TLBðkþ 1Þ > Tu

when in fact a lower value for TLBðkþ 1Þ exists.
This complication is solved by replacing (24) with

T�LBðkÞ ¼ min
xik xikþ1
i 62Ik i¼1,...,m

max TLBðkÞ,TLBðkþ 1Þð Þ, ð26Þ

in cases where k will change to kþ 1. Solving (26) gives the correct values for x�ik
and eliminates the possibility of an error. Additional details about the implementa-
tion of (26) are given in Step 6 of the algorithm in section 7.

5038 D. M. Kodek and M. Krisper

The minimax problem (24–25) must be solved many times within the branch-
and-bound process and it is extremely important to have an efficient method
that gives its solution. Most of the computing time in our algorithm is spent
on solving this problem. The method that is used to solve it is worth a detailed
description.

6. Solving the constrained discrete linear minimax problem

The number of variables xik in (24–25) is equal to the number of indices i, i =2 Ik.
Let m0, 1 � m0 � m, be this number and let PðiÞ, i ¼ 1, . . . ,m0, be the indices not in Ik.
Equation (24) contains m0 terms TI and n� k terms TL. The total number of terms n0

is equal to

n0 ¼ nþm0 � k, m0 � n0 � nþm0: ð27Þ

It helps to rewrite (24) using a new index v

T�LBðkÞ ¼ min
xPðiÞk

max max
v¼1,...,m0

TI ðPðvÞ, kÞ, max
v¼m0þ1,..., n0

TLðv
0, kÞ

� �
, ð28Þ

where v0 ¼ vþ k�m0. Because of the sum constraint in (25) there are only m0 � 1
independent variables. Any of the variables xPðuÞk, u ¼ 1, . . . ,m0, can be expressed
in terms of the other m0 � 1 variables. Notation is simplified by defining the indices
RðiÞ, i ¼ 1, . . . ,m0

RðiÞ ¼
PðiÞ, i ¼ 1, . . . , u� 1

Pði þ 1Þ, i ¼ u, . . . ,m0 � 1
PðuÞ, i ¼ m0:

8<
: ð29Þ

Note that the indices R(i) are a function of u. A variable xPðuÞk ¼ xRðm0Þk is equal to

xRðm0Þk ¼ c0k �
Xm0�1
i¼1

xRðiÞk, ð30Þ

and the minimax problem (24–25) can now be reformulated into a more general form

T�LBðkÞ ¼ min
xRðiÞk

max
v¼1,..., n0

fv þ
Xm0�1
i¼1

�vixRðiÞk

 !
ð31Þ

Xm0�1
i¼1

xRðiÞk � c0k, xRðiÞk � 0: ð32Þ

Definitions of terms fv and �vi, v ¼ 1, . . . , n0, i ¼ 1, . . . ,m0 � 1, are somewhat tedious
though they follow directly from inserting (30) into (20) and (22)

fv ¼

s0RðvÞ, v ¼ 1, . . . ,m0 � 1

s0Rðm0Þ þ tRðm0Þkc
0
k, v ¼ m0

cv0 þ
Xm

r¼1
ðs0r=trv0 Þ þ pv0 þ ðtRðm0Þk=tRðm0Þv0 Þ c

0
kPm

r¼1
ð1=trv0 Þ

, v > m0

8>>>>><
>>>>>:

ð33Þ

5039An optimal algorithm

�vi ¼

tRðiÞk if i ¼ v, 0 if i 6¼ v, v ¼ 1, . . . ,m0 � 1

�tRðm0Þk, i ¼ 1, . . . ,m0 � 1, v ¼ m0

ðtRðiÞk=tRðiÞv0 Þ � ðtRðm0Þk=tRðm0Þv0 ÞPm

r¼1
ð1=trv0 Þ

, i ¼ 1, . . . ,m0 � 1, v > m0:

8>>>><
>>>>:

ð34Þ

The process of solving (31–32) is simplified by the theorem that gives the necessary
and sufficient conditions for the variables xRðiÞk, i ¼ 1, . . . ,m0 � 1, that minimize (31).
The general version of the theorem is given in Demyanov and Malozemov (1990).
It is repeated here in a form that applies to our problem.

Theorem 2: The variables xRðiÞk, i ¼ 1, . . . ,m0 � 1, are the optimal solution
of the minimax problem (31–32) if and only if the following holds

min
zi

max
v2VmaxðxÞ

Xm0�1
i¼1

�viðzi � xRðiÞkÞ ¼ 0, ð35Þ

over all numbers zi, i ¼ 1, . . . ,m0 � 1, that satisfy

Xm0�1
i¼1

zi � c0k, zi � 0: ð36Þ

The set VmaxðxÞ contains those of the row indices v, v ¼ 1, . . . , n0, at which the
maximum E is obtained. That is

E ¼ max
v¼1,..., n0

fv þ
Xm0�1
i¼1

�vixRðiÞk

 !
¼ fv þ

Xm0�1
i¼1

�vixRðiÞk, v 2 VmaxðxÞ: ð37Þ

Only the row indices v, v 2 VmaxðxÞ, that give the extremal values of the function
(37) are used in the Theorem 2. The theorem says that xRðiÞk is the optimal solution
if there are no numbers zi for which (36) is lower than zero. To show how this can
be used to solve (31–32), let us assume that we have a set of numbers xRðiÞk with the
corresponding extremal set VmaxðxÞ. To see if xRðiÞk can be improved, consider the set
of equations

Xm0�1
i¼1

�vi�xRðiÞk ¼ �"v, v 2 VmaxðxÞ, ð38Þ

where all "v > 0. If a solution �xRðiÞk of (38) gives numbers zi ¼ xRðiÞk þ�xRðiÞk that
satisfy (36) we have an improved solution

E � "v ¼ fv þ
Xm0�1
i¼1

�viðxRðiÞk þ�xRðiÞkÞ, v 2 VmaxðxÞ, ð39Þ

in which E is reduced to E �min "v. Note that "v must be small enough so that the
extremal set VmaxðxÞ does not change. If, however, there is no such solution of (38)
then xRðiÞk is the optimal solution because it satisfies the conditions of Theorem 2.

The difficulty lies in equations (38) because there are typically many more
variables than equations. It is not simple to determine if a solution �xRðiÞk that
gives zi satisfying (36) exists. What is needed is an iterative procedure that

5040 D. M. Kodek and M. Krisper

systematically leads to the optimal solution. A procedure that is used in our algo-
rithm is described in the following steps:

(1) The iteration counter l is set to 1. A starting solution is found by trying
xPðiÞk ¼ c0k (the remaining xPðiÞk are of course zero) for i ¼ 1, . . . ,m0 and
the lower bound TLBðkÞ is computed for each i. The index i ¼ i1 that gives
the lowest TLBðkÞ gives the starting solution

x
ð1Þ
Pði1Þk
¼ c0k, x

ð1Þ
PðiÞk ¼ 0, i 6¼ i1: ð40Þ

This starting solution is used because the experiments show that it is often
optimal.

(2) Find the largest of the variables x
ðlÞ
PðiÞk, i ¼ 1, . . . ,m0. Use its index i as u

and compute the indices R(i) using (29). This choice of u ensures that all
of the variables x

ðlÞ
RðiÞk that appear in (41) can increase without violating the

constraints (32). Having R(i) use (33) and (34) to compute the problem
parameters fv and �vi.

(3) Compute the terms

Ev ¼ fv þ
Xm0�1
i¼1

�vix
ðlÞ
RðiÞk, v ¼ 1, . . . , n0 ð41Þ

and find the row indices v that give the maximum E ¼ maxEv. These indices
define the extremal set Vmaxðx

ðlÞ
Þ. Some of the rows v, v 2 Vmaxðx

ðlÞ
Þ, may

have identical fv and �vi, i ¼ 1, . . . ,m0 (because some of the machines Mi

may be identical or very similar). Only one instance of identical rows is kept
in Vmaxðx

ðlÞ
Þ. Elimination of identical rows is important because it simplifies

the problem and also prevents numerical difficulties.
(4) Let e be the number of extremal rows in Vmaxðx

ðlÞ
Þ. Go to Step 7 if e � m0.

Find the e� 1 non-zero variables x
ðlÞ
RðiÞk and define as NðiÞ, i ¼ 1, . . . , e� 1,

the corresponding indices R(i). The indices R(i) of the remaining variables
x
ðlÞ
RðiÞk are defined as ZðrÞ, r ¼ 1, . . . ,m0 � e. Note that some of the variables

xZðrÞk
ðlÞ may be nonzero. Set the index r to 1.

(5) For each of the non-extremal rows q, q =2Vmaxðx
ðlÞ
Þ (excluding identical

extremal rows), write the following system of eþ 1 equations with eþ 1
unknowns

Xe�1
i¼1

�vi�xNðiÞk þ�vi�xZðrÞk þ "rq ¼ 0, v 2 Vmaxðx
ðlÞ
Þ

Xe�1
i¼1

�vi�xNðiÞk þ�qi�xZðrÞk þ "rq ¼ E � Eq:

ð42Þ

It is possible that the system’s matrix contains rows or columns of zeros
or that there is linear dependence; such systems are ignored. The system
is solved otherwise. Solution is ignored if "rq � 0 or if x

ðlÞ
ZðrÞk ¼ 0

and �xZðrÞk < 0. Otherwise check if the variables xNðiÞk þ�xNðiÞk,
i ¼ 1, . . . , e� 1, and xZðrÞk þ�xZðrÞk conform to constraints (32). If they
do not, simply multiply "rq by a factor that forces them to be exactly within
(32). Such a factor always exists because the �x’s are linearly proportional
to "rq. Save the lowest "r ¼ min "rq over all q and the corresponding

5041An optimal algorithm

�xNðiÞk, i ¼ 1, . . . , e� 1, �xZðrÞk. This solution gives an improved minimax
approximation E � "r for a given r. It will also add one of the non-extremal
rows q to the extremal set Vmaxðx

ðlÞ
Þ if "r was not obtained by multiplication

with a factor because of the (32) constraint.
(6) Improved approximation E � "r, if it exists, is the best possible improvement

when only a variable x
ðlÞ
ZðrÞk is used. An even better improvement may exist

for some of the remaining variables. Index r is therefore incremented by
1 and Step 5 is repeated for r � m0 � e. Go to Step 7 if there are no solu-
tions in Step 5 for any of r. Otherwise save the highest " ¼ max "r and
the corresponding �xNðiÞk, i ¼ 1, . . . , e� 1, �xZðrÞk. Compute the new best
solution

x
ðlþ1Þ
NðiÞk ¼ x

ðlÞ
NðiÞk þ�xNðiÞk, i ¼ 1, . . . , e� 1

x
ðlþ1Þ
ZðrÞk ¼ x

ðlÞ
ZðrÞk þ�xZðrÞk,

ð43Þ

where the variables not appearing in (43) remain unchanged. This solution
gives an improved minimax approximation E � " and will also, in most
cases, add one of the non-extremal rows q to the extremal set Vmaxðx

ðlÞ
Þ.

Increment the iteration counter l l þ 1 and go back to Step 2.
(7) Solution is optimal. The optimal lower bound T�LBðkÞ is equal to

T�LBðkÞ ¼ E, ð44Þ

and the optimal variables x�PðiÞk to

x�PðiÞk ¼

x
ðlÞ
RðiÞk, i ¼ 1, . . . , u� 1

x
ðlÞ
Rðm0Þk, i ¼ u

x
ðlÞ
Rði�1Þk, i ¼ uþ 1, . . . ,m0:

8>>><
>>>:

ð45Þ

Stop.

Proving formally that this procedure always produces the optimal solution is not
too difficult. The proof, however, takes too much space and is beyond the scope of
this paper. Note that the number of non-zero variables and the size of the extremal
set grow with the iterations. It is possible to show that when Step 5 does not give
an improved solution for any of the remaining variables this is equivalent to the fact
that a solution of (38) does not exist.

Having the optimal variables x�PðiÞk, i ¼ 1, . . . ,m0, it remains to select the one that
will be used as the new constraint. This is done by computing the products

tPðiÞkx
�
PðiÞk, i ¼ 1, . . . ,m0: ð46Þ

The index P(i) that gives the largest product is selected as ic. The reason for this
choice is obvious — the largest of products (46) is most likely to give the largest
increase of the lower bound TLBðkÞ.

7. The algorithm

The algorithm is based on the well-known branch-and-bound method, which is
described in detail in many textbooks (e.g. Papadimitrou and Steigliz 1982). We
assume that the reader is familiar with this method and continue with the description
of the algorithm.

5042 D. M. Kodek and M. Krisper

An important part of the branch-and-bound method is the branch-and-bound

tree. Each node in the tree represents a subproblem that has some of the variables

constrained to integers. The efficient organization of the tree is important. It does

not, however, influence the results of the algorithm and will not be discussed here.

The algorithm is described in the following steps:

(1) Set k¼ 0 and use (8–9) to compute

TLð j, 0Þ ¼

cj þ
Xm
i¼1

ðs0i=tijÞPm
i¼1 ð1=tijÞ

, ð47Þ

for j ¼ 1, 2, . . . ,m. Note that (47) does not include qj because qj¼ 0 for k¼ 0.
Sort the lower bounds TLðj, 0Þ in the ascending order. The problem param-
eters tij and cj are reordered accordingly. It is assumed from here on that
j¼ 1 corresponds to the lowest TLð j, 0Þ, j¼ 2 to the next higher TLð j, 0Þ, and
so on. The reasons for this reformulation of the problem are simple. Indices j
will be used in the order j ¼ 1, 2, . . . ,m because this strategy quickly elim-
inates the indices j that give the lowest contribution to the total lower bound
TLBðkÞ and at the same time keeps the indices that give the highest contribu-
tion to TLBðkÞ. The lower bound is therefore higher and this can significantly
reduce the number of branch-and-bound iterations. Several other strategies
for selecting the order of indices j were tested; none performed better over
a large class of problems.

(2) Set the current best solution Tu to 1 (a large positive number). The cor-
responding variables x

ðuÞ
ij can be set to anything — they will be replaced by

one of the solutions quickly. The index u indicates that Tu is an upper bound
on Topt. The alternative is to use some heuristic construction and compute
a near-optimal starting solution Tu. We found that this is not really neces-
sary because the algorithm quickly produces good near-optimal solutions.

(3) Create the root node. This is done by making k ¼ 1, m0 ¼ m (this makes
the set Ik empty), and solving the problem (31–32) as described by (35–46).
The root node’s lower bound is set to Tnode ¼ T�LBð1Þ and the node’s
information is stored in the branch-and-bound tree. For each node the
stored information contains the following: Tnode, index k, the size of set Ik
(equal to m�m0), indices i in Ik (if any), integer variables xIij , j ¼ 1, . . . , k,
index ic, and the non-integer variable x�ick. Initialize the branching counter
N to zero.

(4) Choose the branching node by searching through the nodes of the branch-
and-bound tree. Go to Step 8 if no nodes with Tnode < Tu are found or if
the tree is empty. Add 1 to the branching counter N and choose the branch-
ing node according to the following rule: if N is odd, choose the node with
the lowest Tnode, otherwise choose only among the nodes that contain the
largest number of integer variables xIij and select the one that has the lowest
Tnode. This branching strategy is a combination of the lowest lower bound
and depth first strategies and is used to get many of the near-optimal solu-
tions as fast as possible. The branching node’s information is available for
the next steps.

5043An optimal algorithm

(5) Two subproblems are created from the branching node by fixing the node’s
variable x�ick to integers

xIick ¼ bx
�
ick
c, ð48Þ

xIick ¼ bx
�
ick
c þ 1, ð49Þ

where bx�ickc is the nearest lower integer to x�ick. The integers xIick must
of course conform to (25). If xIick in (49) does not, discard this subproblem
(subproblem (48) is never discarded because x�ick satisfies (32)). The number
of non-integer variables xik is reduced by 1

m0 m0 � 1: ð50Þ

If m0 � 2 go to Step 6. Otherwise, there is only one noninteger variable xik
left. Its integer value is already determined because (25) gives

xIick þ xIik ¼ c0k, ð51Þ

and xIik is easily computed. All variables xik are known integers
xIik, i ¼ 1, 2, . . . ,m. Because of this the index k is incremented as described
by (5)

k kþ 1: ð52Þ

The new set Ik is made empty (m0 ¼ m). If k � n, go to Step 6. Otherwise,
we have a case where all of the subproblem’s variables xij are integer. This
is a complete integer solution and the cycle time T is simply computed as

T ¼ max
i¼1, 2,...,m

si þ
Xn
j¼1

tijx
I
ij

 !
: ð53Þ

If T < Tu, we have a new best solution; the current Tu is set to T and
the current best solution x

ðuÞ
ij is replaced by xIij . The branch-and-bound

tree is searched and all nodes with Tnode � Tu are removed from the tree.
Go to Step 7.

(6) Each of the non-discarded subproblems from Step 5 is solved. The already
known integers xIij are taken into account by computing s0i and c0k using (6)
and (7). The largest of the s0i is found

s0max ¼ max
i¼1,...,m

s0i, ð54Þ

and the subproblem is discarded if s0max � Tu because it obviously cannot
lead to a better solution. Otherwise (33) and (34) are used to compute fv and
�vi. The minimax problem (31–32) is solved as described by (40–46) giving
T�LBðkÞ and x�ick. The subproblem’s lower bound is equal to

T
ðnewÞ
node ¼ maxðT�LBðkÞ, s

0
maxÞ: ð55Þ

The reason for including s0max is that s0i, i 2 Ik, are not part of the computa-
tion of T�LBðkÞ. The algorithm works without this modification but is slower.

As mentioned at the end of Section 5, T�LBðkÞ must be computed
differently (using (26) instead of (24)) for nodes with m0 ¼ 2. Such nodes
will undergo a change of k to kþ 1 when used in Step 5. Instead of changing
(31–32) to accommodate the more complicated (26), we chose a simple local

5044 D. M. Kodek and M. Krisper

search approach here. The T�LBðkÞ is computed using (24) and the resulting
x�ick is rounded to the nearest integer xIick. Because of m

0
¼ 2 all variables xik

are known integers and the corresponding T�LBðkþ 1Þ can be computed.
A simple search along xIick gives a solution to (26), which is then used
in (55) to get T

ðnewÞ
node . The local search approach works well because the

starting xIick is almost always at the global minimum.
The subproblem is discarded if T

ðnewÞ
node � Tu. Otherwise its information,

containing T
ðnewÞ
node and x�ick, is stored as a new node in the branch-and-bound

tree.
(7) The subproblem in the branching node from Step 4 is modified (the root

node is an exception — it is simply removed from the branch-and-bound tree
and we go to Step 4). The branching subproblem is modified by changing the
integer variable xIlk that was created last. The modification is equal to

xIlk
xIlk � 1 if xIlk was created by ð48Þ

xIlk þ 1 if xIlk was created by ð49Þ:

(
ð56Þ

This of course means that each node in the branch-and-bound tree must
also contain information about the integer variable that was created last and
about the way it was created (either by (48) or (49)). The branching node is
removed from the tree if the new xIlk < 0 or if xIlk > c0k and we go to Step 4.
Otherwise, the modified subproblem is solved exactly as in Step 6. Note that
k and m0 always remain unchanged and that this subproblem can never be
a complete integer solution. If T ðnewÞnode < Tu the modified subproblem is stored
back into the tree, otherwise it is removed from the tree. Go to Step 4.

(8) The current best solution is the optimal solution. The optimal cycle time Topt

is equal to Tu and the optimal variables x
ðoptÞ
ij are equal to x

ðuÞ
ij . Stop.

8. Experimental results

The algorithm was implemented in a program and tested on many different cases.
It is typical of the problem (1–3) that there are often many equivalent optimal
solutions. One of the three optimal solutions of the example given in table 1 is
presented in table 2. It took less than 0.1 s of computer time to find it. A 2.4-GHz
Pentium IV computer was used as a platform for all experiments.

To demonstrate the usefulness of our algorithm for realistic size problems, a test
set of four circuit boards was created. The number of different component types
n ranges from 10 to 100 and the total number of components per board from 404
to 4040. Description of large problems takes a great amount of space — it is never-
theless needed to allow verification of the results. To conserve space, we created the
test boards on the basis of the m¼ 3, n¼ 10 problem from table 1. The additional
components were defined by shifting the column information of the original
problem. The n¼ 20 problem parameters are defined as

c
ð20Þ
j ¼

cj, j ¼ 1, 2, . . . , 10

cj�10, j ¼ 11, 12, . . . , 20

(
t
ð20Þ
ij ¼

tij , j ¼ 1, 2, . . . , 10

ti1, j ¼ 11

tij�11, j ¼ 12, 13, . . . , 20

8>><
>>: , ð57Þ

5045An optimal algorithm

where c
ð20Þ
j , t

ð20Þ
ij are new parameters and cj, tij are values from table 1. Similarly,

the n¼ 40 and n¼ 100 problem parameters are defined as

c
ð40Þ
j ¼

c
ð20Þ
j , j ¼ 1, 2, . . . , 20

c
ð20Þ
10 , j ¼ 21

c
ð20Þ
j�21, j ¼ 22, 23, . . . , 40

8>>><
>>>:

t
ð40Þ
ij ¼

t
ð20Þ
ij , j ¼ 1, 2, . . . , 20

t
ð20Þ
ij�20, j ¼ 21, 22, . . . , 40

8<
: ð58Þ

c
ð100Þ
j ¼

c
ð40Þ
j , j ¼ 1, 2, . . . , 40

c
ð40Þ
9 , j ¼ 41, c

ð40Þ
10 , j ¼ 42

c
ð40Þ
j�42, j ¼ 43, 44, . . . , 60

c
ð40Þ
8 , j ¼ 61, c

ð40Þ
9 , j ¼ 62

c
ð40Þ
10 , j ¼ 63

c
ð40Þ
j�63, j ¼ 64, 65, . . . , 80

c
ð40Þ
7 , j ¼ 81, c

ð40Þ
8 , j ¼ 82

c
ð40Þ
9 , j ¼ 83, c

ð40Þ
10 , j ¼ 84

c
ð40Þ
j�84, j ¼ 85, 86, . . . , 100

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

t
ð100Þ
ij ¼

t
ð40Þ
ij , j ¼ 1, 2, . . . , 40

t
ð40Þ
ij�40, j ¼ 41, 42, . . . , 80:

t
ð40Þ
ij�80, j ¼ 81, 82, . . . , 100

8>>><
>>>:

ð59Þ

Table 3 gives the results for the case of m¼ 3 machines. The cycle time Talg

is obtained with our algorithm, Topt is the optimal cycle time (or its lower bound),
and Trnd is the rounded cycle time that was obtained by rounding the non-integer
linear programming solution to the nearest integers. The standard program GLPK
4.1 (GNU Linear Programming Kit Version 4.1) was used to compute the linear
programming solution.

Computing time was limited to a maximum of 60 s for each of the test problems.
This limit was used to demonstrate the simplicity and speed of our algorithm. The
results show that the optimal solutions were obtained for n¼ 10 and n¼ 20 boards.
The algorithm did not find optimal solutions for n¼ 40 and n¼ 100 problems. It did,
however, find the lower bounds and near-optimal solutions that are at least as good
as the rounded one.

Machine Mi

Allocation xij of components
Assembly time
on machine Mi1 2 3 4 5 6 7 8 9 10

1 162 6 49 30 0 0 0 9 0 0 112.5
2 0 84 0 0 0 0 0 0 7 0 112.4
3 0 0 2 0 22 16 12 0 0 5 111.0
Number cj of
components 162 90 51 30 22 16 12 9 7 5

Table 2. Optimal solution of the cycle time problem from table 1. The solution was obtained
with the algorithm described herein.

5046 D. M. Kodek and M. Krisper

It is interesting to compare the n¼ 20 optimal solution with the one obtained by

the standard integer programming software. Our algorithm produced the solution

in 4 s — the GLPK 4.1 needed 1132 s. Neither the GLPK 4.1 nor our algorithm

converged within 2 h for n¼ 40 and n¼ 100 problems. Results from table 3

were also compared with the results obtained by the genetic algorithm technique

(Ji et al. 2001), which were found to be not as good as the rounded non-integer

solutions.

Experiments with the same four boards were repeated for the assembly line with

six placement machines. The additional three machines are identical to the ones in

table 3; this was done to avoid the lengthy description of their placement times.

The same 60 s time limit was used and table 4 gives the results. The algorithm and

the GLPK 4.1 did not find the optimal cycle time for any of the boards. Still, the

near-optimal solutions are not far from the lower bounds and are consistently better

than the rounded ones.

An interesting and somewhat unexpected result that follows from our experi-

ments is a good quality of the rounded linear programming solutions. The main

reason for this is a relatively large number of components of the same type cj on our

test boards. This makes the non-integer solution less sensitive to rounding. It also

makes the allocation problem more difficult from the point of view of our algorithm.

The algorithm works better when cj are small because of the reduced search space.

Experiments in tables 3 and 4 can be considered the worst-case scenario.

9. Conclusions

A new algorithm for component allocation problem was presented. The algo-

rithm uses a novel approach quite different from the existing ones. It is simple and

typically finds the optimal solution for problems with up to 50–80 variables. For

larger problems, it finds the near-optimal solutions that seem to be as good or better

than those obtained by other near-optimal methods. It also gives the lower bound on

the optimum which can be useful to the user.

m n Talg Topt Trnd

3 10 112.5 112.5 113.2
3 20 203.4 203.4 203.8
3 40 443.1 � 439.90 443.6
3 100 1241.9 � 1201.50 1241.9

Table 3. Results for four boards on the assembly line with
m ¼ 3 machines.

m n Talg Topt Trnd

6 10 59.5 � 58.90 59.8
6 20 105.0 � 104.60 105.1
6 40 224.8 � 222.80 225.8
6 100 624.6 � 603.70 624.7

Table 4. Results for four boards on the assembly line with
m ¼ 6 machines.

5047An optimal algorithm

Acknowledgement

The authors thank Professor B. Vilfan for providing the formal proof of
NP-completeness for the problem (1–3).

References

AMMONS, J. C., CARLYLE, M., CRANMER, L., DEPUY, G., ELLIS, K., McGINNIS, L. F.,
TOVEY, C. A. and XU, H., 1997, Component allocation to balance workload in
printed circuit card assembly system. IIE Trans. 29, 265–275.

ASKIN, R. G., DROR, M. and VAKHARIA, A. J., 1994, Printed circuit card family grouping and
component allocation for a multimachine, open-shop assembly cell. Naval Res. Logist.,
41, 587–608.

BRUCKER, P., 1998, Scheduling ALGORITHMS, 2nd ed., pp. 274–307 (Berlin: Springer).
DEMYANOV, V. F. and MALOZEMOV, V. N., 1990, Introduction to Minimax, pp. 113–115

(New York: Dover).
DEPUY, G. W., AMMONS, J. C. and MCGINNIS, L. F., 1997, Formulation of a general

component allocation model for printed circuit card assembly systems, in Proceedings
of the 1997 Industrial Research Conference, Miami, FL, USA, pp. 444–449.

JI, P., SZE, M. T. and LEE, W. B., 2001, A genetic algorithm of determining cycle time for
printed circuit board assembly lines. Eur. J. Oper. Res. 128, 175–184.

KIM, Y. D., LIM, H. G. and PARK, M. W., 1996, Search heuristics for a flowshop scheduling
problem in a printed circuit board assembly process. Eur. J. Oper. Res., 91, 124–143.

KODEK, D. M., 1998, A theoretical limit for finite wordlength FIR digital filters, in
Proceedings of the 1998 CISS Conference, Princeton, NJ, USA, pp. 836–841.

KODEK, D. M., 2002, An approximation error lower bound for integer polynomial minimax
approximation. Electrotech. Rev., 69, 266–272.

PAPADIMITROU, C. H. and STEIGLITZ, K., 1982, Combinatorial Optimization, pp. 433–453,
(Englewood Cliffs: Prentice-Hall).

SCHTUB, A. and MAIMON, O. Z., 1992, Role of similarity measures in PCB grouping procedure.
Int. J. Prod. Res., 30, 973–983.

VILFAN, B., 2002, NP-completeness of a certain scheduling problem [in Slovenian]. Internal
Report, University of Ljubljana, Faculty of Computer and Information Science,
Slovenia.

5048 D. M. Kodek and M. Krisper

