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Performance Limit of Finite Wordlength
FIR Digital Filters
Dušan M. Kodek, Senior Member, IEEE

Abstract—In many practical situations, it is necessary to repre-
sent the coefficients of a finite impulse response (FIR) digital filter
by a finite number of bits. This not only degrades the filter fre-
quency response but also introduces a theoretical limit on the per-
formance of the filter. Derivation of a lower bound on filter degra-
dation is the purpose of this paper. We consider a general case of a
length filter with a discrete set of allowable coefficients. A the-
orem that gives the lower bound on the increase in minimax ap-
proximation error that is caused by the finite wordlength restric-
tion is presented. Its extension and application to filter design cases
is demonstrated. The importance of this bound is not only theoret-
ical. Its practical effectiveness is shown in the algorithm for optimal
finite wordlength FIR filter design where it significantly reduces
the amount of computation.

Index Terms—FIR digital filters, finite wordlength, minimax ap-
proximation, performance limits.

I. INTRODUCTION

I T is often not practical to use the optimal finite impulse re-
sponse (FIR) digital filter coefficients obtained by some “in-

finite precision” algorithm. The so-called infinite precision coef-
ficients are typically 32-bit floating point numbers. Although the
32-bit wordlength is hardly infinite, it is much longer than prac-
tical finite wordlengths in which we are interested. One may, for
example, wish to use a fixed point DSP processor which is usu-
ally cheaper and/or faster than a floating-point one. The number
of bits that can be used to represent the filter coefficients will
in general depend on the filter length , processor properties,
and on signal quantization, but it is almost always true that filter
coefficients with as short as possible wordlength are desirable.

Replacing the optimal filter coefficients with the -bit ones
degrades filter’s frequency response. The number of bits must
therefore not be too short, or the filter will no longer be good
enough. The designer faces the following question: Given the
filter specifications, what is the lowest number of bits that
will give an acceptable finite wordlength filter? It is clear that
this question cannot be answered by rounding the coefficients to

bits and computing the frequency response—rounding gives
a suboptimal filter, which can be up to 30 dB worse than the
optimal -bit filter. What is needed is a frequency response of the
optimal filter, and herein lies the problem. Designing an optimal
finite wordlength filter requires a solution of an NP-complete
approximation problem that is not easy to solve. Most designers
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would prefer to know in advance if the result is worth trying at
all, and this paper is an attempt in this direction.

Many papers on the practical aspects of finite wordlength FIR
filter design have been published in the literature. They typi-
cally use one of the two types of finite wordlength coefficient
constraints: signed -bit integers [1]–[3] or sums of a limited
number of signed power-of-two terms [4]–[6]. The integer co-
efficients can be used, for example, with the fixed-point DSP
processors, whereas the sums of power-of-two allow a multi-
plierless implementation. Various versions of integer program-
ming techniques were used to solve the approximation problem.

It is perhaps surprising that so little is known about the the-
oretical aspects of the problem of finite wordlength FIR filter
design. Some initial results were given in [7]–[9], where it was
found that it is not possible to meet arbitrarily severe FIR filter
specifications with the fixed -bit wordlength by increasing
the filter length . A more difficult problem of estimating the
increase in minimax (Chebyshev) approximation error that is
caused by the -bit constraint for a given filter of length was
left unanswered.

This paper presents a new method that solves this problem
by deriving a lower bound theorem for the increase in minimax
approximation error. This bound is a theoretical limit on the per-
formance of a given -bit FIR filter of length . The motivation
for developing the bound is, however, very practical. It can be
used to significantly reduce the amount of computation in the
algorithm for optimal finite wordlength FIR filter design.

II. FINITE WORDLENGTH DESIGN PROBLEM

Let us start with the infinite precision design problem. The
frequency response of a length optimal infinite preci-
sion (i.e., filter coefficients can be any real number) linear-phase
FIR digital filter is equal to

(1)

where or . Depending on (odd or even) and filter
symmetry (positive or negative), there are exactly four types of
FIR filters and four real functions . The degree of the
cosine polynomial

(2)
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is related to the filter length , and there are formulas that relate
the optimal coefficients and . Function is irrele-
vant from the point of view of the approximation problem, and
we will therefore use . To find , one must solve
the following minimax approximation problem

(3)

The real function is the desired frequency response, the
weighting function is by definition real and positive, and
the interval is a subset (or a union of subsets) of the interval

.
Algorithms like linear programming and various versions of

the exchange algorithm make solving (3) quite simple. The stan-
dard approach is to use the Remez algorithm in a way that
was described by Parks and McClellan [10]. The problem’s
complexity changes dramatically when the finite wordlength
constraint is introduced. Constrained minimax approximation
problem is NP-complete and is much harder to solve than the
infinite precision one.

We can, without loss of generality, make the finite
wordlength constraint equal to requesting that the filter
coefficients are -bit integers from the set , where

. The integer set
is chosen for convenience only—any other finite set of -bit
numbers (sums of a limited number of power-of-two terms,
for example) can be used instead. Constraining the coefficients

to the set requires a redefinition or scaling of the orig-
inal infinite precision approximation problem. This is necessary
to bring the coefficients within the range of numbers in and
can be done with the help of a scaling factor . Let us assume
that is known, and denote as , and the
original (unscaled) problem. The approximation problem can
be rewritten as

(4)

where

(5)

is the finite wordlength polynomial, and and
are the scaled input functions. Observe that

in (5). This requires an explanation since it is the filter
coefficients that must be from the set . It is easy to see
there is no problem here if the scaling factor is modified. The
nature of modification follows from the formulas that relate the
filter coefficients to cosine polynomial coefficients . For
type 1 FIR filters (odd , positive symmetry), there is

(6)

Obviously, if , then must be from the set of even
numbers of twice the size of those in for . Dividing the
scaling factor in (4) by 2 will also divide all by 2, and the

set can now be used for both and . Since all were
divided by 2, it is necessary to replace (6) by

(7)

Note that the coefficient is a special case. Its values are con-
strained to the elements of divided by 2, which is only a minor
complication.

Similar considerations apply to the type 2, 3, and 4 FIR filters.
The difference is that must be divided by 4 and not by 2, where

is again a special case, as above. The net effect of dividing
by 2 or 4 is a unification of all four cases from the point of view
of the approximation problem.

It follows from (5) that scaling factor can be interpreted as
the filter gain. Scaling can also be used in the infinite precision
case, where it does not affect the approximation error. Things are
different in the finite wordlength design where approximation
error changes with . The choice of is not trivial and is worth
discussing a little more. Two different approaches are used in
practice.

1) The scaling factor is included in the minimax approxi-
mation problem [11] as a variable

(8)

This gives the optimal scaling factor and the lowest ap-
proximation error but is significantly more difficult to
solve than (4).

2) A constant scaling factor determined by some ad hoc
method is used. A typical method is a positive integer
that is obtained by selecting the maximum for which all
products do not exceed the maximum element
from . Since the optimal -bit differs from ,
it is possible that one or more of the optimal fall out
of . If this occurs, the initial is reduced by 1,
and redefined, and computation repeated. Several
iterations may be needed.

A comparison between the optimal scaling factor and the above
ad hoc integer scaling factor was done in [12]. The results show
that the optimal scaling factor approximation error was on av-
erage about 8% (0.68 dB) lower than the one obtained by the in-
teger scaling factor. The signed integer set was used in these
experiments, and it is possible that this difference is higher for
other discrete sets.

In this paper, we assume that is a known constant. Extension
of the results to the case of optimal is more complicated and
is not presented here.

III. LOWER BOUND DERIVATION

Notation will from here on denote a polynomial of de-
gree with -bit coefficients from , whereas remains
the optimal infinite precision polynomial. and
are the scaled input functions in both cases. The well-known
Chebyshev equioscillation theorem (also known as the alterna-
tion theorem) [13] gives the conditions for the optimal minimax
approximation of degree : There are at least so-called ex-
tremal points in at which the approximation error achieves
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its maximum. Let be
these extremal points. The following hold:

(9)

where is the optimal approximation error. No such property
exists for -bit . Approximation error is simply

(10)

Since is unique, the approximation error increases if
. There is

(11)

where .
The problem we wish to address can be stated as follows:

What is the minimum given the best possible coefficients
? Stated differently, how much will increase rela-

tive to because of the -bit constraint. The lowest possible
is needed to answer this question. This lowest is a theoret-

ical limit on the performance of a given -bit FIR digital filter
of length . Let us denote it as and define it formally as

(12)

To get a lower bound for , we must be able to express it as
a function of differences . This will be
done following an approach similar to the one used in [14] and
[15]. Let us use the extremal points , and
combine (9) and (10) into

(13)

These equations can be viewed as a system of equations
with unknowns. The unknowns are and . Note
that the system’s matrix is identical to the one in (9). Since (9)
is already solved (to get and ), it is clear that (13) is always
invertible. The inverse can be written as

(14)

(15)

where are the elements of the inverted matrix. This matrix
has some very useful properties that become visible if (13) is
rewritten as

(16)

Inserting (16) into (14) and (15) gives

(17)

(18)

Setting for all gives and

(19)

(20)

This means that (17) and (18) can be simplified into

(21)

(22)

Two important properties of matrix elements now follow
from (19)–(22).

1) For , at least two of are nonzero. This
is easy to see because (21) holds for an arbitrary
of degree . This means that it also holds for with

, where is an arbitrary nonzero number. Ob-
viously, this is impossible if all are zero. Furthermore,
it follows from (19) that at least two must be nonzero,
or formally

for at least two (23)

2) For , all of are nonzero, and their signs
alternate

sign sign (24)

This follows from a property of all functions that satisfy
the Haar condition, of which cosine polynomial is a spe-
cial case [16]. For any of degree and any set of

distinct points , the nonzero numbers from
(22) always satisfy (24). Using (20), we also get

(25)

For any set of optimal coefficients , there exist numbers
and , both from , that are the nearest upper and lower

neighbors of . In other words, is an element of that
gives the smallest positive difference , and is an
element of that gives the smallest (in an absolute sense) neg-
ative difference . Having and , we can now prove
the following theorem.

Theorem 1: Let be the optimal weighted minimax ap-
proximation to a real function on the interval , and let
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be a cosine polynomial with coefficients from . Then,
the increase in approximation error is bounded by

(26)

where the positive factors and the negative factors are
defined as

sign (27)

sign (28)

Proof: It follows from (12) that finding a lower bound on
is equivalent to finding a lower bound on . This

can be done with the help of (16) if we define the subset of
extremal indices , as

if sign

(29)

For , the sign of equals the sign of
, and (16) gives the bound

(30)

where we used the fact that the maximum approximation error
on the interval cannot be lower than the maximum

on its subset . For a given , (30) gives

(31)

To get an estimate on over all -bit , let us multiply and
divide each term in (21) and (22) with sign

sign

sign (32)

sign

sign (33)

These two contain the terms sign
, which appear in (29). The proof is simplified if (33) is

first multiplied by sign

sign (34)

By multiplying (34) with an arbitrary factor and subtracting it
from (32), we get

sign

(35)

where the new coefficients are defined as

sign
(36)

Because of (25), all terms are nonzero and positive.
This means that it is always possible to find factors which
make all negative or positive. Note that it follows from (19)
and (23) that such factors can never be zero.

Let us examine the case , which gives
in (35). It is easy to see that a factor , which is

defined by (27), is the smallest positive number that makes all
. Since , there must be

at least one index that is in . Furthermore, it is obvious
that is the lowest when all indices are in .
Equation (35) gives

(37)

Using (19) and (20), it is possible to simplify the sum into

sign

(38)

and the following bound follows from (31) and (37)

(39)

Similarly, a negative factor , which is defined by (28),
makes all . Using gives , and the
following bound is obtained:

(40)

The numbers and , both from , are defined as the
nearest upper and lower neighbors of . Obviously, no other
choice of can give that is lower than both (39) and
(40). This means that , which is defined by (12), is bounded by

(41)

Since this holds for all , choosing the largest
as in (26) gives the best lower bound. This completes the
proof.

The theorem does not put any restrictions on the nature of
the discrete set . It holds for any set of functions that satisfy
the Haar condition and not only for cosine polynomials. This
level of generality is not needed in this paper although it may be
useful in other cases.

It is interesting to observe the lower bound behavior when
. For a given finite , the coefficient becomes almost

independent of as it goes toward infinity. This means that the
same is true for the corresponding differences and

in (26). Things are different for the absolute values
of denominators and , which tend to grow with . This
follows from (20) and (25), where must decrease with ,
whereas this is not true for . We can expect that the
lower bound will decrease for large . The rate of decrease is,
however, slower than the rate of decrease of . The ratio of
lower bound to therefore grows with .
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IV. IMPROVED LOWER BOUND

The bound given by the Theorem 1 is quite easy to compute.
It can also be considerably improved because the theorem uses
only one of the coefficient differences , namely,
the one that gives the maximum in (26). The other differences
play no part, which is identical to saying that only one of the
coefficients must be from . Since this is not the case, an
improved lower bound can be obtained by combining two or
more of (35).

Let us select any two of the equations in (35)
and denote the corresponding indices as and . Equation is
multiplied by a factor and subtracted from equation , which
gives

sign (42)

where the new coefficients are equal to

sign
(43)

Following the same approach as before, we define a positive
factor that makes all and a negative factor

that makes all

sign (44)

sign (45)

Because of , factors and exist for any
, and . Furthermore, they are always nonzero. This is easy

to see if (42) is rewritten as

(46)

Using the same argument as in (23), it is obvious that a giving
for all cannot exist, which in turn means that

and are nonzero.
Assume now that and , both from , are known and

define a function

(47)

Comparison with (39) and (40) shows that this corresponds to
the following bound:

(48)

One of the terms in (47) is always positive and the other one
always negative. The negative term does not contribute to the
bound; the problem is that it is not known which one is negative
because they both depend on , which has yet to be determined.
The value of must be chosen so that the function is as high

as possible. To find such , it is necessary to solve the following
optimization problem:

(49)

subject to

sign (50)

sign (51)

where the constraints (50) and (51) imply (44) and (45). The
objective function is nonlinear, whereas the constraints are
linear. This type of optimization problem can be solved by the
gradient-projection method [17], which becomes quite simple
in this special case because the constraints restrict the domain
of feasible points to and . It follows from (47)
that, on this domain, is a monotone function along all three
variables. Its maximum is always at the lowest (in an absolute
sense) feasible value of either or .

The exact position of this point depends on and is straight-
forward to find. Let us assume that is known (in addition to
and ). Depending on the sign of , either

or gives the maximum in (47). In either case, there
exists an index that gives or in (44) or (45) as

or sign (52)

Using (52), the objective function (47) can be simplified into

sign (53)

The first derivative of (53) is equal to

sign (54)

For nonzero derivative, it is clear that if is replaced by
so that

(55)

the objective function will increase. The size of must be
limited to the point where a change of index that gives
or in (44) or (45) occurs. This follows from (54) because
the sign of the derivative can change only when changes, or
in other words, must not be too large. It is easy to see from
(52) that will change when the following equality is reached
for some :

(56)

where the sign of must conform to (55). This gives the max-
imum allowed

sign

(57)
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where indices that give negative values in the search for min-
imum must be ignored. Let us denote the index that gives the
minimum as and use the fact that is simply
multiplied by the sign of derivative

sign (58)

The algorithm for finding that maximizes in our optimiza-
tion problem (49)–(51) can now be described. It consists of the
following steps.

1) Start with , and use (44)–(47) to compute . Ex-
change indices and , and repeat the computation of .
Keep the original indices and if the first is greater
or equal to the second one—keep the exchanged indices
otherwise. This step is important because it ensures that
will always be finite.

The greater of is the starting solution. Its computa-
tion also gives the index , as described by (52) and
(53).

2) Compute the derivative (54). Stop if it is zero, else keep
its sign.

3) Use (57) and (58) to compute and the minimal index
.

4) Replace with the new value

(59)

and compute new using (53).
5) Replace index by the new value

(60)

6) Compute the new derivative (54), and stop if it is zero or
if its sign differs from the previous one. Otherwise, return
to step 3 for the next iteration.

The algorithm is fast and needs only a small number of iterations
before the optimal and are found. Note however, that is
valid only for a given pair and is not the lower bound on
the increase in approximation error in which we are interested.

To get a lower bound on , it is necessary to repeat the compu-
tation of optimal for all possible combinations of from

. In addition, to get the best lower bound, all possible pairs of
indices and can be tried. In other words, we must find

(61)

The search through all pairs is straightforward and must be
repeated times. This number can be greatly reduced
if only the most promising indices are used as and . Such a
lower bound is obtained much faster and is typically just a little
lower.

Searching through all values of and from appears
more difficult because the size of can be large, but it is re-
ally not necessary to try all values from . The search space
becomes much smaller with the help of Theorem 1 if we note

TABLE I
FIVE SETS OF FILTER SPECIFICATIONS. THE FREQUENCY

EDGES ARE DIVIDED BY 2�

that (26)–(28) can also be used to compute the lower bound for
a given . We have

for

for
(62)

Beginning with and , for example, a starting
optimal is computed using the algorithm. The next higher
from need be tried only if from (62) is lower than . It is
ignored otherwise, and the search in this direction is terminated
since increasing obviously cannot lead to a smaller lower
bound. The same approach is repeated to search in the negative
direction of (starting with ) and the positive and negative
direction of . The total number of values and that must
be tried is quite reasonable and is typically much smaller than
the size of .

As mentioned before, these ideas can in principle be extended
to three or more of (35). This extension, however, is much more
complicated than in the case of two equations. Not only must
the search be performed in three or more dimensions, but the al-
gorithm that computes the optimal (two or more of them) be-
comes more complicated. This extension was not pursued after
initial attempts.

V. RESULTS

Fifteen filters with five different sets of frequency-domain
specifications, which are denoted through , were used for
testing. The frequency specifications are identical to those used
in [3] and are given in Table I. is a lowpass filter with unit
weighting in both bands. is the same, except that the stopband
has a weighting of 10. is a bandstop filter with unit weighting
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TABLE II
LOWER BOUNDS ON THE INCREASE IN MINIMAX APPROXIMATION

ERROR FOR 15 DESIGN CASES

in all bands, whereas has a weighting of 10 in the stopband.
is a lowpass filter whose passband and stopbands do not in-

clude or .
We denote by A25/8 the filter design problem for specifica-

tion , length ( independent coefficients), and
bits (sign included) and similarly for A35/8, B25/9, and

so on. Table II shows a summary of the results, comparing the
infinite precision deviation , the lower bound on given by
Theorem 1, and the improved lower bound given by (61) (using
all pairs ). The last column contains the optimal -bit ap-
proximation error. Integer set and a constant scaling factor

were used in all design cases. This scaling was chosen
for simplicity as well as to allow easier comparison with the
older results.

As expected, the improved lower bound is consistently better
than the simple bound given by Theorem 1, and it also grows
with the filter length when measured relative to . It grows,
for example, from 14% of for C25/8 to 71% for C45/8. This
indicates that it can be effective in the algorithm for the optimal
finite wordlength design.

The improved lower bound (61) was implemented in a
program for optimal finite wordlength FIR filter design. The
program is based on the branch-and-bound algorithm, which
requires solutions of a large number of subproblems. Each
branch-and-bound subproblem is a redefined infinite precision
problem of the form (3).

TABLE III
RESULTS OF THE LOWER BOUND EFFECTIVENESS IN THE ALGORITHM

FOR OPTIMAL FINITE WORDLENGTH FIR FILTER DESIGN

Let us examine a subproblem , which can be written as

(63)

where is defined as

(64)

Coefficients are already in . Solution
of (63) is a cosine polynomial of degree

(65)

with the optimal infinite precision coefficients and the op-
timal approximation error . The lower bound on the in-
crease in approximation error is computed as described above
and added to . If the sum exceeds the current best -bit
solution, this subproblem obviously cannot lead to a better -bit
solution and can be removed from the list of subproblems. This
in turn means that all subproblems emanating from this one need
not be solved.

The price for this reduction is the time needed to compute
the lower bound. This time must be small compared to the time
that is needed to solve (63), or most of the gain will be lost.
Experiments have shown that using all pairs in (61) takes too
much time. This time is greatly reduced when only pairs from
the four indices out of are chosen for each subproblem.
The following four indices are used.

1) Index is selected because the variable will be
constrained to next. This creates two new subproblems
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(with and ), and a different lower
bound can be computed for each one.

2) Indices that give the lowest (in an absolute sense)
and in (27) and (28) are the obvious choice since they
promise the highest lower bound.

3) Index that gives the maximum lower bound in (26) must
be included to ensure that the improved lower bound is
better than the one from Theorem 1.

The maximum number of pairs is and is often
lower because the same index can appear in two (or more) of
the above cases. The corresponding lower bound was found to
be on average only between 5% and 10% lower than the bound
computed by using all pairs. The computing time, however, is
reduced much more.

This version of the improved lower bound was implemented
in a program. Table III shows a summary of the results, com-
paring the number of branch-and-bound subproblems that must
be solved when the lower bound is used and when it is not. The
corresponding computing times in seconds on a 2.4 GHz Pen-
tium 4 are also given. The results show that the number of sub-
problems was reduced by a factor that is about 2.5 on average.
The total computing time reduction factor was 2.1. The simple
lower bound given by Theorem 1 was also tested giving the cor-
responding reduction factors 2.0 and 1.6.

A similar reduction in computing time can be expected for
other discrete sets as well as for the case of parallel machine
implementation that was reported in [18].

VI. CONCLUSION

A new method that allows computation of a lower bound for
the increase in minimax approximation error that is caused by
the finite wordlength constraint was presented in this paper. This
bound gives a theoretical limit on the performance of a given
-bit FIR filter of length and can also be used to significantly

reduce the amount of computation in the algorithm for optimal
finite wordlength FIR filter design. Design examples have con-
firmed its effectiveness.
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