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Abstract

Rounding of the so-called infinite precision coefficients to their nearest finite wordlength represen-
tation is often used for reasons of simplicity. This rounding, however, is typically far from optimal.
A significantly better rounding method that uses a technique called telescoping is presented in this
paper. Its practical effectiveness in the design of suboptimal finite wordlength filters is demonstrated.
It can also be used to speed up the algorithms for optimal finite wordlength FIR filter design.
0 2005 Elsevier Inc. All rights reserved.
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1. Introduction

There are many practical situations in which the coefficients of an FIR digital filter
must be represented with a finite number of bits. This means that the “infinite precision”
coefficients have to be somehow replaced by the finite wordlength ones. The so-called
infinite precision coefficients are typically 32-bit floating point numbers. Though the 32-bit
wordlength is hardly infinite, it is much longer than practical finite wordlengths that we
are interested in. Replacing the infinite precision coefficients with the finite wordlength
coefficients degrades the filter’s frequency response. The lowest degradation is obtained
if an optimal finite wordlength design algorithm is used. Such algorithms, however, are
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slow and it is not clear if filters with length 125, for example, can be designed this way.
Simple rounding of the infinite precision coefficients to their nearest finite wordlength
representation is therefore still often used.

Rounding of the infinite precision FIR filter coefficients to the nearest finite wordlength
representation is well understood and was analyzed extensively in Refs. [1,2]. Its effect
on the frequency response degradation is basically random and does not take into account
any of the properties of FIR filter design problem. This paper presents a better rounding
method that uses the properties of the minimax approximation problem. Its application is
straightforward and usually produces finite wordlength filters that are significantly better
than those obtained by simple rounding. The method is also useful in the algorithms for
optimal finite wordlength FIR filter design where it can be used to reduce the amount of
computation needed to produce the optimal solution.

2. Statement of the problem
To describe the method let us start with the infinite precision design problem. The fre-

quency responsH *(w) of a lengthN optimal infinite precision (i.e., filter coefficients can
be any real number) linear phase FIR digital filter is equal to

N-1 n
H* (w) = Z h*(k)e_'/wk — o/ (L/2—=0(N=1)/2) 0(w) Zaz coskaw, 1)
k=0 k=0

whereL = 0 or 1. Depending oW (odd or even) and filter symmetry (positive or negative)
there are exactly four types of FIR filters and four real functioi®). The degree: of
the cosine polynomial

n
P*(w) = Z aj coskw, (2)
k=0
is related to the filter lengtlv and there are formulas which relate the optimal coefficients
h* (k) anday . Itis easy to see thad (w) is irrelevant from the point of view of the approx-
imation problem and we will therefore assu@€w) = 1. To find P*(w) one must solve
the following minimax approximation problem:

21(!3 an)l%)(iW(a))(D(a)) — P(w))]. (3)
The real functionD (w) is the desired frequency response, the weighting fundtign) is

by definition real and positive, and the setis a subset of the interv@d, 7 ]. The optimal
infinite precision minimax approximation error or deviatibi is equal to

£ — g;%x{W(w)(D(w) - q coskw)

k=0

: (4)

Algorithms like linear programming and various versions of the exchange algorithm make
solving (3) quite simple. The standard approach is to use the Remez algorithm in a way
that was first described by Parks and McClellan [3]. The problem’s complexity changes
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dramatically when the finite wordlength constraint is introduced. Constrained minimax

approximation problem is NP-complete and is much harder to solve than the infinite preci-
sion one. This is the reason for the interest in suboptimal methods like the rounding of the
infinite precision coefficients.

In order to describe our method, the finite wordlength design problem needs to be
defined more precisely. We can, without loss of generality, make the finite wordlength con-
straint equal to requesting the filter coefficieht&) to beb-bit integers from the sek;,
wherel, = {-2-1,...,-1,0,1,...,2"1}. The integer sef; is chosen for convenience
only—any other finite set of numbers (sums of power-of-two, for example) can be used
instead.

Constraining the coefficients(k) to the setl, requires a redefinition or scaling of
the original infinite precision approximation problem. This is necessary to bring the fi-
nite wordlength coefficients within the range of numberd;rand can be done with the
help of a scaling factos. Let us assume thatis known and denot®, (w), W, (w), and
P,(w) as the original (unscaled) problem. The finite wordlength approximation problem
can be rewritten as

min max W, ()/s (s Du(@) = s Pu(@))] = min max W (@)(D(@) = P@)[,  (5)
where

D(w) =sDy(w), W(w) =Wy (w)/s,

P(a)):sPu(a))=Zak coskw, ay € Ip. (6)

k=0
P (w) is the finite wordlength polynomial anfl(w), W (w) are the scaled input functions.
Observe thaty;, € I, in (6). This requires an explanation since it is the filter coeffi-
cientsh(k) that must be from the sd}. It is easy to see there is no problem here if the
scaling factor is modified. The nature of modification follows from the formulas that re-
late the filter coefficient& (k) to cosine polynomial coefficients,. For type 1 FIR filters
(odd N, positive symmetry) there is

h(n) =ag, hin—k)=ar/2, k=212, ...,n. (7

This means that ifi (k) € I, a must be from the set of even numbers of twice the size of
those inlj, for k > 1. Dividing the scaling factos in (5) by 2 will also divide alla; by 2

and the sef, can now be used for botfy, andi (k). Since alla; were divided by 2 it is
necessary to replace (7) by

hmy=2a0,  hn—K)=ar, k=12....n. ®

The coefficientag is a special case — its values are constrained to the elemerits of
divided by 2. This property afp must be taken into account in either rounding or optimal
finite wordlength design.

Similar considerations apply to the type 2, 3, and 4 FIR filters. The difference is that
s must be divided by 4 and not by 2 whetg is again a special case as above. The net
effect of dividings by 2 or 4 is a unification of all four cases from the point of view of the
approximation problem.
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It follows from (6) that scaling factos can be interpreted as the filter gain. In most
digital filtering applications one is allowed to use any galecause its effect can usually
be easily removed, if so desired. Scaling can also be used in the infinite precision case
where it affects the size of coefficients, but does not affect the approximation error. Situa-
tion is different in the finite wordlength design where approximation error changes with
The choice ofs is therefore not trivial and it is important both in the optimal and in the
suboptimal finite wordlength design.

Our rounding method can be used with any scaling factde will start with an as-
sumption that it is a known constant and explain later how a suitatde be found.

3. Telescoping polynomials

Notation P (w) will from here on denote a polynomial with+bit coefficientsa;, k =
0.1,...,n, from I, while P*(w) is the optimal infinite precision polynomial with uncon-
strained coefficients;, k=0,1,...,n. D(w) andW (w) are the scaled input functions in
both cases. This means that the effect of the scaling fadg®already included in coeffi-
cientsa;.

The well-known Chebyshev equioscillation theorem (also known as the alternation the-
orem) [4] provides the conditions for the optimal infinite precision minimax approximation
of degreen: there are at least+ 2 so-called extremal points 2 at which the approxima-
tion error achieves its maximum. Let, wo < w1 < --- < w41, be these extremal points.
The following equations hold:

W(wi)<D(wi)—ZaZCOSkwi> Z(—l)id, i=01,...,n4+1, 9)
k=0

whereE* = |d| is the optimal approximation error.
Let us now take the highest order coefficiefjtand replace it with its nearest finite
wordlength neighbous,, € I,

an = a, + Aay, (10)

where|Aa,| is defined as the lowest possible distance ftgfrto a number inf,. Ob-
viously, if Aa, < 0 the finite wordlength coefficiend, is the nearest lower neighbor
of a;—it is the nearest upper neighbor otherwise. For the integef, d& value ofAa,
always lies betweer-0.5 and 05.

Using a, instead ofa; gives the approximation error that is greater th&n for
nonzeroAa,. The increase in approximation error can be made smaller if the remaining
coefficientsay_,,ar_,, ..., aj are suitably modified. Derivation of a simple modification
that achieves this goal is the main purpose of this paper. We will show that it can be done
with the help of a so-called telescoping cosine polynor@iglw) that was first described
in Ref. [5],

n—1
C,(w) = coSnw + Z Cnk COSka. (11)
k=0
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Telescoping polynomial’, (w) is defined as a solution of a minimax problem
E. =minmaxw ' . 12
» =minmax W () Cy ()| (12)

This means that for a given s& and a given weighting functiof (w) no other co-

sine polynomial of degree with leading coefficient 1 can have smaller extreme value
than C, (w). In this respectC, (w) is similar to a Chebyshev polynomial of degreeli-
vided by 2~ for which the same is true [6] whe@ = [—1, 1] andW (w) = 1. Telescoping
polynomial C, (w) can therefore be viewed as a Chebyshev polynomial that is altered to
conform to a particular FIR design problem.

Computing the coefficientsnk, k =0,1,...,n — 1, is quite easy. We simply make
D(w) = —cosnw and the Remez algorithm can be used to solve the minimax ap-
proximation problem as in (3). Having, (w) let us modify the remaining coefficients
a,_q,a;_,,...,aq in the following manner:

alP’ =af + Aayenk, k=0,1,...,n—1. (13)
These coefficients define a new polynomi4l (w) of degreen
n—1
PY (@) =a,como+ Y al coskw = P*(0) + AdyCy (). (14)
k=0

The coefficients ofP® (w) are different from the optimal coefficients’, which means
that they give the approximation error

ED = max W (o) (D () — PO ()|, (15)
we
that is greater thaf*. The increase in the approximation error, however, is upper bounded

and the upper bound is the lowest when telescoping polynafji@b) is used as in (13).
This is proven formally in the following theorem.

Theorem 1. Let P (w) be a cosine polynomial of degreedefined by(14). Then its
approximation error is bounded by
E(l) g E* + AanEC”, (16)

whereE,, is given by(12).

Proof. The approximation erroE™ can be rewritten as

n—1
ED _ ma{ W (o) (D(a)) — (a} + Aay) cosno — Z(a,j + Adycnk) COSkw)
wes =0

n n—1
= ﬂ%{ W(w) (D(a)) — Za,f coskw — Aay, (COSna) + anz COSkw)) ‘

k=0 k=0
= maQ)4W(w)(D(a)) — P*(®) — AayCp ()]
we

< E* + Aan ECn9 (17)



D.M. Kodek, M. Krisper / Digital Signal Processing 15 (2005) 522-535 527

where the triangle inequality was used in the last line. Sifigeis by definition the low-
est possible value for any cosine polynomial of degregith leading coefficient 1, the
upper bound (16) cannot be lower for any polynomial that is different fégrw). This
completes the proof. O

The theorem does not put any restrictions on the nature of the discrdije Res also
easy to show that it holds for any set of functions and not only for cosine polynomials. This
level of generality is not needed in this paper although it may be useful in other cases.

The upper bound (16) is important because it demonstrates the special role of telescop-
ing polynomialC, (w). It is also pessimistic since it represents the worst case in which the
extremal pointsy; from (9) and (12) coincide. The actual increase in the approximation
error is usually lower thama, E.,. Nevertheless, the telescoping polynomial promises
lower increase than any other easily computed polynomial.

4. Telescoping rounding

Let us examine the polynomi@® (w). Its coefficients, is finite wordlength while the

remaininga,gl_)l, ail_)z, e, aél) are not. They can, however, be made finite wordlength if

the procedure described by (10)—(13) is applied repeatedly. The coeﬁiﬁﬁﬁs replaced
by the nearest finite wordlength_1 € I,

1
an-1=a'", + Aa,_1, (18)

where|Aa, 1| is again the lowest distance frmﬁ?l to a number inf,. A new telescoping
polynomial of orden — 1 is defined as before

n—2
Cp_1(w) =cosn — Do + Z Cn_1. k COSk®. (19)
k=0

Telescoping polynomial’,, _1 (w) is a solution of a minimax problem

Ec, , = min max W (@) Cp-1(@)], (20)
and the remaining coefficients are modified giving
a,iz) = a,il) + Aay_1cp-1,k, k=0,1,...,n—2. (22)
These coefficients define a new polynomi4P (w) of degreen,
n—2
PP (w) = a, cOSnw + a,_1c08n — Do + Z a,iz) COoskw. (22)
k=0

This polynomial has finite wordlength coefficieaisanda,_1 while the remaining: — 1
coefficients are not finite wordlength. The above procedure is repeated for polynomials
PO (w), PP (w), ..., P"D(w) and itis clear that alt + 1 coefficients ofP "+ () are

finite wordlength. As noted in (8), the coefficieyﬁ” is a special case—the nearest finite
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wordlength coefficientg must be selected from elementsigfthat are divided by 2. Note
that this does not mean that elementdoimust be divisible by 2.

The polynomialP "1 (w) represents the rounded FIR filter that we were looking for.
Its approximation error

Ep, = E@+D _ man|W(w)(D(a)) _ ptD (a))) |’ (23)

is almost always lower than the one obtained by the simple rounding of the infinite preci-
sion coefficientsy to their nearest finite wordlength representations figmit can also

be improved considerably by introducing additional search into the telescopic rounding
process.

The idea for this improvement comes from the observation that in cases hegids
close to 05 the choice of the lowes$iay | is not necessarily the best. The absolute distances
from an infinite precision coefficierai,((’) to its nearest lower and upper finite wordlength
neighbors are similar and therefore both worth investigating. This differs significantly from
the cases wherAay| is close to zero. Since it is not possible to know in advance which
choice is better, both the nearest lower and the nearest upper neighbor are tried in such
cases—the choice that gives lowgy, is selected.

The notion of “close to 0.5” must be defined more precisely. It was determined experi-
mentally that| Aa;| = 0.3 represents a suitable threshold for deciding whether to try both
choices or not. Our telescoping rounding method can now be summarized in the following
steps:

1. Compute and save the coefficients of telescoping polynor@igl€s, ..., C,. This,
as mentioned before, can be done using the same Remez algorithm that is used to
compute the infinite precision coefficients.

2. Redefine the infinite precision coefficients as

a,go):a,f, k=0,1,...,n. (24)

Set the index of the coefficient that is to be rounded nextito
3. For coefficien" " compute its distancég; to its nearest finite wordlength repre-

i
sentation from,. If | Aa;| > 0.3 go to step 4. Otherwise compute the finite wordlength
coefficienta; = a4 Aa; and use telescoping polynomid] to compute the coef-

i

ficients of polynomialP 19 (),

a"™ D =" 4 Agien, k=0,1,...,i—1. (25)
Go to step 5. '
4. Both lower and upper neighbors @lﬁ"_’) must be tried. Usé\q; first and compute
telescoping polynomial "+1-1 (), P+2=D(w), ..., P*tD(w) as described by

(21)—(23). Alln + 1 coefficients ofP "+ (w) are finite wordlength and its approxi-
mation errorE;, is computed and saved.Na; < 0 changeAq; to Ag; + 1, otherwise
change it toAa; — 1. Repeat the procedure with the changed and compute the
correspondingz, . If it is lower than the previous one, compute the finite wordlength
coefficienta; = al-(”_l) + Ag; and the coefficients (25) using the changed . Other-
wise use the startinga; .
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5. Replace index by
Pi—1 (26)

Return to step 3 if > 1. Otherwise the coefficientg, k =0,1,...,n, are all finite
wordlength and we have obtained the rounded polynomial.

The most time consuming part of the telescoping rounding method are two computa-
tions of £, in step 4. Computing the coefficients of telescoping polynon@als step 1
may seem substantial since it requireapplications of the Remez algorithm, but is in fact
modest. It is easy to see that the number of operations grows polynomially aitd not
exponentially as is the case with optimal finite wordlength algorithms. The total time is al-
most negligible when compared to the time needed for a typical optimal finite wordlength
solution.

The idea of searching for the beAt; can be extended to two or more coefficients.
A two coefficient version of the method that searches simultaneously lengndAa; 1
was implemented and tested. A direct extension of the one coefficient method would be to
compute

a0 =" 4 Adieiia, 27)

if |Aa;| > 0.3 and then computéga;_1. If there is alsgAg;_1| > 0.3 approximation er-
ror Ey, is computed for all four combinations of lower/upper neighbonsi%T’), ai(lerl—:)

and theAg; that gives the lowesE;, is selected. Otherwise the procedure would remain

the same as described in the one coefficient method. Although this works, the experiments
have shown that it is better to use the criteridv; + Aa;—1] < 1.2. Approximation er-

ror E;, is computed only for those combinations of lower/upper neighbors that satisfy this
criterion and theAgq; that gives the lowesE, is selected. The reason for better perfor-
mance of this criterion lies in the fact that it takes into account the property that opposite
signs of Ag; and Ag;_1 tend to produce approximation errors which, to a certain extent,
cancel each other. Other criteria were tried and none performed better.

The two coefficient version is approximately two times slower than the one coefficient
version. The corresponding rounded polynomial is usually, but not always, better than the
polynomial obtained by the one coefficient method. It follows from (24)—(27) that it is
possible to construct a set of infinite precision coefficierjtshat give a one coefficient
rounded polynomial that is better than a two coefficient rounded polynomial. We therefore
combined both methods and used the two coefficient polynomial only if it is better.

The amount of computation for a three coefficient version again increases by a factor
of two and the same exponential increase follows for four or more coefficient search. The
three coefficient version was tested and abandoned because the results show that it is only
rarely better than the two coefficient version.

5. Results

Fifteen filters with five different sets of frequency-domain specifications, dendted
through E, were used for testing. The frequency specifications are identical to those that
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Table 1
The five sets of filter specifications. The frequency
edges are divided by

Filter Band 1 Band 2 Band 3
A

Edges 0-0.2 25-05

D(w) 1 0

W (w) 1 1

B

Edges 0-0.2 @5-05

D(w) 1 0

W(w) 1 10

C

Edges 0-0.12 2-034 042-05
D(w) 1 0 1

W(w) 1 1 1

D

Edges 0-0.12 2-034 042-05
D(w) 1 0 1

W(w) 1 10 1

E

Edges 0.01-0.21 .p6-Q49

D(w) 1 0

W(w) 1 1

were used in Ref. [7] and are given in TableAlis a low-pass filter with unit weighting in
both bandsB is the same, except that the stopband has a weighting @ i0a bandstop
filter with unit weighting in all bands, whilé® has a weighting of 10 in stopband.is a
low-pass filter whose passband and stopbands do not inelu€8 or .

We denote by A35/8 the filter design problem for specificatipnlength N = 35
(n = 18 independent coefficients), amd= 8 bits (sign included); similarly for A45/8,
B35/9, and so on. Table 2 shows a summary of the results, comparing the infinite preci-
sion approximation erroE* and the finite wordlength approximation errdi'g, obtained
by different methods. The following methods are included: simple rounding to the nearest,
one coefficient telescoping rounding, two coefficient telescoping rounding, and the optimal
finite wordlength design.

The last column gives the relative quality of the two coefficient telescoping rounding.
The results show that it is within 90% of the optimal solution in 12 out of 15 examples, but
there are also two examples (C35/8 and D125/22) in which they are equal. Intedgr set
and a constant scaling factoe= 2°~1 were used in all examples. This scaling was chosen
for simplicity as well as to allow easier comparison with the older results.

As expected, both telescopic rounding methods are consistently better than the simple
rounding to the nearest. The two coefficient telescoping method is better than the one co-
efficient method in 10 out of 15 filters, although the difference is often small. It is probably
worth using since it is still quite fast. The computing time for the two coefficient telescop-
ing rounding for all 15 filters was less than 5.1 s. Compare this with 2462 s that were
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Table 2
Comparison of approximation errors using a constant scaling factc?®—1
Filter E* Rounding to One coefficient Two coefficient OptimaIE;‘b Relative
nearestt;,  telescopick;, telescopicZy, quality EZ} /E1,
A35/8 0.01594584 0.03266230 0.03266230 0.03266230 0.02983816  0.91
A45/8 0.00712762 0.03701502 0.03186462 0.03186462 0.02962304  0.93
A125/21 0.00000797 0.00001532  0.00001248 0.00001179 .00001077 0.91F
B35/9 0.05271937 0.15891206 0.09709565 0.07851429 0.07709547  0.98
B45/9 0.02104800 0.11718750 0.06640625 0.06640625 0.05679037 0.86
B125/22 0.00002489 0.00004675  0.00003322 0.00003293 .00002959 0.90"
C35/8 0.00262898 0.04687500 0.01787084 0.01787084 0.01787084  1.00
C45/8 0.00066997 0.03045225  0.02287919 0.02103044 0.01609009  0.77

C125/21 0.00000001 0.00000878  0.00000220 0.00000210 .00000206 0.98"
D35/9 0.01043321 0.12197080  0.03368525 0.03368525 0.03252775  0.97

D45/9 0.00223461 0.10904023  0.03224953 0.02859819 0.02612254 0.91
D125/22 0.00000004 0.00004034  0.00000380 0.00000216 .00000216 1.00

E35/8 0.01760590 0.04692227  0.04221047 0.03399270 0.03299053  0.97
E45/8 0.00653752 0.03577490 0.03549788 0.03403126 0.02887703  0.85

E125/21 0.00000787 0.00001429  0.00001158 0.00001127 .00001034 0.92

needed to compute all 15 optimal finite wordlength filters (time for each oMhe 125
filters was limited to 600 s). A 2.4 GHz Pentium 4 PC was used as a platform for all
experiments.

Knowing the optimal finite wordlength approximation erio}, is of course necessary
for evaluation of any rounding method. This creates a problem when long filters are used
because it is impossible to find the optimal solution in a reasonable time. Such is the case
of length N = 125 filters which were included to demonstrate that the telescoping method
also works for long filters. The values; for N = 125 are marked by to indicate that
they are estimates that were obtained after 600 s of computation and were not proved to be
optimal.

The long finite wordlength filters deserve an additional comment. It has been shown
in Ref. [8] that for a given number of bits there exists a nonzero lower bound on the
approximation error, below which it is not possible to go, no matter how large the Iahgth
Furthermore, it is possible to demonstrate that for all optimal finite wordlength filters there
exists an index beyond which the optimal finite wordlength coefficienjsare all zero.

Or formally

ar=0, k>I+1, (28)

wherel is a function ofb and of desired frequency response. No method for computation
of [ is known at this time, although it can be determined experimentally. For example,
the optimal finite wordlength filter D45/9 in Table 2 is in fact of length 39—the remaining
coefficients are zero. Increasing its length to, ay: 301 would only give additional zero
coefficients. This means that designing long finite wordlength filters is appropriate only if
a correspondingly large number of bitss used. Such is the case @f= 125 filters in our
examples where 21 and 22 bits were used.

To further demonstrate the effectiveness of telescoping rounding method, we also tested
it on a more complicated case of variable scaling fagtdrhe optimal scaling factafopt
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can be obtained together with the optimal finite wordlength coefficientssiincluded as
a variable in the minimax approximation problem (5)

min max W (@)(D() = s P())], (29)

where P (w) is the finite wordlength polynomial. This problem is significantly more dif-
ficult to solve than the one in whichis a constant. A much simpler method that gives a
good suboptimat is obviously needed when rounding is used. We use a heuristic that is
similar to the one used in Ref. [9] and can be used with any rounding method. Its details
depend somewhat on the nature of discretd;sek version for integer se, that was used

in our experiments is described in the following steps:

1. Starting withs = 2 use (6) to compute the scaléfw), W(w) and use the Remez
algorithm to compute the infinite precision coefficienfs Rounda; to the finite
wordlengthay, € I, using telescoping or some other rounding method. The correspond-
ing approximation errof;, is computed and saved. The scaling fastts multiplied
by 2, the coefficients;; are again computed, rounded, aAg, is computed. This
process is repeated until the maximutfi| exceeds the maximum integerfnby n/2.

As noted before, coefficienf; is a special case and must be multiplied by 2 during the
search for maximunjz/|. The scaling factos that gave the lowesk;, is saved as;.

2. The power of 2 factosg = s2 is used as a starting value for additional search upwards
and downwards fromp. The integer search stefy is defined as

Ay = max(l, 52/128). (30)

Starting withs = so + A the upward search withincreasing bya, continues until the
maximum|a;| exceeds the maximum integerinby n/2 as in step 1. If a loweE,

is found, the correspondingis used as the new best scaling integefmhe highesk

that was used is saved agax and the search is repeated in the downward direction
starting withs = s» — A;. The downward search stops wheffalls belowsmay/2. It
follows from (6) that it is extremely unlikely for suchto improveE;, because they
give the coefficienta; which are ¥2 of those that were already tried.

The basic idea is to get a rough estimatesfan step 1 and then improve it in step 2.
Because of (30) the number &f, computations is typically less than 128. The criterion
“maximum integer inf, plusn/2” that is used to stop the upward search is steps 1 and 2
is based on the observation thg, starts to grow when infinite precision coefficienfs
begin to exceed the maximum elementipf Then/2 part is used to ensure that this also
holds for the telescoped coefficiem,g’") in (25). As is true for any heuristic, we do not
claim that the integey is the best possible integer scaling factor.

Instead of usingp we include an additional improvement that gives a better noninteger
scaling factos*. This improvement follows from the observation that a lower valug gf
is available with some additional computation. Assume that for a given scaling faatior
coefficientsa; are integers frond,,. The approximation erroE;, that is given by (23) can
be reduced if the following minimax approximation problem is solved:

rr}inﬂ%AW(w)(D(w) — P (@), (31)



D.M. Kodek, M. Krisper / Digital Signal Processing 15 (2005) 522-535 533

Table 3

Comparison of approximation errors using variable scaling fastors

Filter E* Rounding to One coefficient Two coefficient OptimaIE’;h Relative
nearestt;,  telescopick;, telescopicE, quality EZ} /E1,

A35/8 0.01594584 0.02235840  0.02092188 0.02075809 0.01979400 0.95

A45/8 0.00712762 0.01628142  0.01332987 0.01332987 0.01332987 1.00

A125/21 0.00000797 0.00001025 0.00000959 0.00000939 .00000903 0.91

B35/9 0.05271937 0.08009994  0.06161027 0.06008090 0.05858363  0.98

B45/9 0.02104800 0.06010068  0.03189451 0.03189451 0.03176571  0.99
B125/22 0.00002489 0.00003587  0.00002788 0.00002755 .00002682 0.97"

C35/8 0.00262898 0.01371235 0.01024694 0.01012225 0.01002662  0.99
C45/8 0.00066997 0.01392602 0.00967561 0.00912290 0.00847374  0.93
C125/21 0.00000001 0.00000393  0.00000112 0.00000109 .0000010§ 1.00"

D35/9 0.01043321 0.02642507 0.02102677 0.02102677 0.01917670 0.91
D45/9 0.00223461 0.04796042 0.01282368 0.01282368 0.01282368  1.00
D125/22 0.00000004 0.00001250 0.00000124 0.00000124 .00000124 1.00"

E35/8 0.01760590 0.02507156  0.02293072 0.02231877 0.02200041  0.99

E45/8 0.00653752 0.01659247  0.01523235 0.01491765 0.01347661  0.90
E125/21 0.00000787 0.00001023  0.00000923 0.00000916 .00000888 0.97'

for variabler. SinceP "+ (w) is known (31) can be rewritten

min m%{ W (w) P (w) (ﬂ t> ) (32)

P(”+1)(w) -
This is a one variable minimax approximation problem. It follows from the Chebyshev
equioscillation theorem (9) that there are two extremal paitsand w; at which the
approximation error achieves its maximum

D(w;)
POtD (@)

This is easy to solve with either the general Remez algorithm or its faster, simplified one
variable version. Solution* gives a noninteger scaling factet = r*s which gives the
reduced approximation error. It is computed in steps 1 and 2 for all instandgg obm-
putation. The scaling facter* that gives the lowesE;, = |d| is the result of our heuristic

and was used in experiments that are given in Table 3. Note that this method of scaling
factor computation was also used for the case of rounding to the nearest in column 3.

The variable scaling factors give approximation errors that are significantly lower than
those from Table 2. Both telescopic rounding methods are again consistently better than
the simple rounding to the nearest. The results show that the two coefficient telescoping
rounding is within 90% of the optimal solution in all 15 examples and there are also four
examples (A45/8, C125/21, D45/9, D125/22) in which they are equal.

The price for much lower approximation errors is the increase in the computing time.
The variable scaling factor two coefficient telescoping rounding for all 15 filters took 523 s.
Compare this with 5231 s that were needed to compute all 15 optimal finite wordlength
filters with optimal scaling factor. Computing time for each of thie= 125 filters was
again limited. The limit was 1200 s and these filters were not proved to be optimal. The
times are much longer than the constant scaling factor times for examples from Table 2.

|W(a),-)P("+1)(w,~)|< r*) =(-1id, i=0,1 (33)
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Integer setl, was used in our experiments but similar results can be expected for other
discrete setg,.

We also used the telescoping rounding to reduce the amount of computation in our
branch-and-bound based algorithm for optimal finite wordlength FIR filter design. The
reduction results from (1) having a better starting solution and (2) from using telescopic
rounding on selected subproblems to “guess” a possible better solution before it would be
found otherwise. The observed degree of reduction differs considerably from one problem
to another. We found that it tends to be higher for smaller problems but nevertheless worth
doing for all.

6. Conclusion

This paper presents a hew rounding method for suboptimal finite wordlength FIR dig-
ital filter. The method is simple to implement and produces filters that are much better
than those obtained by simple rounding of coefficients to their nearest finite wordlength
representation. Design examples have confirmed its effectiveness.
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