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Abstract

Rounding of the so-called infinite precision coefficients to their nearest finite wordlength rep
tation is often used for reasons of simplicity. This rounding, however, is typically far from opt
A significantly better rounding method that uses a technique called telescoping is presented
paper. Its practical effectiveness in the design of suboptimal finite wordlength filters is demons
It can also be used to speed up the algorithms for optimal finite wordlength FIR filter design.
 2005 Elsevier Inc. All rights reserved.

Keywords:FIR digital filters; Finite wordlength effects; Rounding; Quantization; Minimax approximation

1. Introduction

There are many practical situations in which the coefficients of an FIR digital
must be represented with a finite number of bits. This means that the “infinite prec
coefficients have to be somehow replaced by the finite wordlength ones. The so
infinite precision coefficients are typically 32-bit floating point numbers. Though the 3
wordlength is hardly infinite, it is much longer than practical finite wordlengths tha
are interested in. Replacing the infinite precision coefficients with the finite wordle
coefficients degrades the filter’s frequency response. The lowest degradation is o
if an optimal finite wordlength design algorithm is used. Such algorithms, howeve
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slow and it is not clear if filters with length 125, for example, can be designed this
Simple rounding of the infinite precision coefficients to their nearest finite wordle
representation is therefore still often used.

Rounding of the infinite precision FIR filter coefficients to the nearest finite wordle
representation is well understood and was analyzed extensively in Refs. [1,2]. Its
on the frequency response degradation is basically random and does not take into
any of the properties of FIR filter design problem. This paper presents a better rou
method that uses the properties of the minimax approximation problem. Its applica
straightforward and usually produces finite wordlength filters that are significantly b
than those obtained by simple rounding. The method is also useful in the algorithm
optimal finite wordlength FIR filter design where it can be used to reduce the amo
computation needed to produce the optimal solution.

2. Statement of the problem

To describe the method let us start with the infinite precision design problem. Th
quency responseH ∗(ω) of a lengthN optimal infinite precision (i.e., filter coefficients ca
be any real number) linear phase FIR digital filter is equal to

H ∗(ω) =
N−1∑
k=0

h∗(k)e−jωk = ej (Lπ/2−ω(N−1)/2)Q(ω)

n∑
k=0

a∗
k coskω, (1)

whereL = 0 or 1. Depending onN (odd or even) and filter symmetry (positive or negati
there are exactly four types of FIR filters and four real functionsQ(ω). The degreen of
the cosine polynomial

P ∗(ω) =
n∑

k=0

a∗
k coskω, (2)

is related to the filter lengthN and there are formulas which relate the optimal coefficie
h∗(k) anda∗

k . It is easy to see thatQ(ω) is irrelevant from the point of view of the appro
imation problem and we will therefore assumeQ(ω) = 1. To findP ∗(ω) one must solve
the following minimax approximation problem:

min
P(ω)

max
ω∈Ω

∣∣W(ω)
(
D(ω) − P(ω)

)∣∣. (3)

The real functionD(ω) is the desired frequency response, the weighting functionW(ω) is
by definition real and positive, and the setΩ is a subset of the interval[0,π]. The optimal
infinite precision minimax approximation error or deviationE∗ is equal to

E∗ = max
ω∈Ω

∣∣∣∣∣W(ω)

(
D(ω) −

n∑
k=0

a∗
k coskω

)∣∣∣∣∣. (4)

Algorithms like linear programming and various versions of the exchange algorithm
solving (3) quite simple. The standard approach is to use the Remez algorithm in
that was first described by Parks and McClellan [3]. The problem’s complexity cha
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dramatically when the finite wordlength constraint is introduced. Constrained min
approximation problem is NP-complete and is much harder to solve than the infinite
sion one. This is the reason for the interest in suboptimal methods like the rounding
infinite precision coefficients.

In order to describe our method, the finite wordlength design problem needs
defined more precisely. We can, without loss of generality, make the finite wordlengt
straint equal to requesting the filter coefficientsh(k) to beb-bit integers from the setIb,
whereIb = {−2b−1, . . . ,−1,0,1, . . . ,2b−1}. The integer setIb is chosen for convenienc
only—any other finite set of numbers (sums of power-of-two, for example) can be
instead.

Constraining the coefficientsh(k) to the setIb requires a redefinition or scaling
the original infinite precision approximation problem. This is necessary to bring th
nite wordlength coefficients within the range of numbers inIb and can be done with th
help of a scaling factors. Let us assume thats is known and denoteDu(ω), Wu(ω), and
Pu(ω) as the original (unscaled) problem. The finite wordlength approximation pro
can be rewritten as

min
Pu(ω)

max
ω∈Ω

∣∣Wu(ω)/s
(
sDu(ω) − sPu(ω)

)∣∣ = min
P(ω)

max
ω∈Ω

∣∣W(ω)
(
D(ω) − P(ω)

)∣∣, (5)

where

D(ω) = sDu(ω), W(ω) = Wu(ω)/s,

P (ω) = sPu(ω) =
n∑

k=0

ak coskω, ak ∈ Ib. (6)

P(ω) is the finite wordlength polynomial andD(ω), W(ω) are the scaled input function
Observe thatak ∈ Ib in (6). This requires an explanation since it is the filter coe
cientsh(k) that must be from the setIb. It is easy to see there is no problem here if
scaling factor is modified. The nature of modification follows from the formulas tha
late the filter coefficientsh(k) to cosine polynomial coefficientsak . For type 1 FIR filters
(oddN , positive symmetry) there is

h(n) = a0, h(n − k) = ak/2, k = 1,2, . . . , n. (7)

This means that ifh(k) ∈ Ib, ak must be from the set of even numbers of twice the siz
those inIb for k � 1. Dividing the scaling factors in (5) by 2 will also divide allak by 2
and the setIb can now be used for bothak andh(k). Since allak were divided by 2 it is
necessary to replace (7) by

h(n) = 2a0, h(n − k) = ak, k = 1,2, . . . , n. (8)

The coefficienta0 is a special case — its values are constrained to the elementsIb

divided by 2. This property ofa0 must be taken into account in either rounding or optim
finite wordlength design.

Similar considerations apply to the type 2, 3, and 4 FIR filters. The difference is
s must be divided by 4 and not by 2 wherea0 is again a special case as above. The
effect of dividings by 2 or 4 is a unification of all four cases from the point of view of
approximation problem.
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It follows from (6) that scaling factors can be interpreted as the filter gain. In mo
digital filtering applications one is allowed to use any gains because its effect can usua
be easily removed, if so desired. Scaling can also be used in the infinite precisio
where it affects the size of coefficients, but does not affect the approximation error.
tion is different in the finite wordlength design where approximation error changes ws.
The choice ofs is therefore not trivial and it is important both in the optimal and in
suboptimal finite wordlength design.

Our rounding method can be used with any scaling factors. We will start with an as-
sumption that it is a known constant and explain later how a suitables can be found.

3. Telescoping polynomials

NotationP(ω) will from here on denote a polynomial withb-bit coefficientsak, k =
0,1, . . . , n, from Ib, while P ∗(ω) is the optimal infinite precision polynomial with unco
strained coefficientsa∗

k , k = 0,1, . . . , n. D(ω) andW(ω) are the scaled input functions
both cases. This means that the effect of the scaling factors is already included in coeffi
cientsa∗

k .
The well-known Chebyshev equioscillation theorem (also known as the alternatio

orem) [4] provides the conditions for the optimal infinite precision minimax approxima
of degreen: there are at leastn+2 so-called extremal points inΩ at which the approxima
tion error achieves its maximum. Letωi, ω0 < ω1 < · · · < ωn+1, be these extremal point
The following equations hold:

W(ωi)

(
D(ωi) −

n∑
k=0

a∗
k coskωi

)
= (−1)id, i = 0,1, . . . , n + 1, (9)

whereE∗ = |d| is the optimal approximation error.
Let us now take the highest order coefficienta∗

n and replace it with its nearest fini
wordlength neighboran ∈ Ib,

an = a∗
n + �an, (10)

where|�an| is defined as the lowest possible distance froma∗
n to a number inIb. Ob-

viously, if �an < 0 the finite wordlength coefficientan is the nearest lower neighbo
of a∗

n—it is the nearest upper neighbor otherwise. For the integer setIb the value of�an

always lies between−0.5 and 0.5.
Using an instead ofa∗

n gives the approximation error that is greater thanE∗ for
nonzero�an. The increase in approximation error can be made smaller if the rema
coefficientsa∗

n−1, a
∗
n−2, . . . , a

∗
0 are suitably modified. Derivation of a simple modificati

that achieves this goal is the main purpose of this paper. We will show that it can be
with the help of a so-called telescoping cosine polynomialCn(ω) that was first describe
in Ref. [5],

Cn(ω) = cosnω +
n−1∑

cnkcoskω. (11)

k=0
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Telescoping polynomialCn(ω) is defined as a solution of a minimax problem

Ecn = min
cnk

max
ω∈Ω

∣∣W(ω)Cn(ω)
∣∣. (12)

This means that for a given setΩ and a given weighting functionW(ω) no other co-
sine polynomial of degreen with leading coefficient 1 can have smaller extreme va
thanCn(ω). In this respectCn(ω) is similar to a Chebyshev polynomial of degreen di-
vided by 2n−1 for which the same is true [6] whenΩ = [−1,1] andW(ω) = 1. Telescoping
polynomialCn(ω) can therefore be viewed as a Chebyshev polynomial that is alter
conform to a particular FIR design problem.

Computing the coefficientscnk, k = 0,1, . . . , n − 1, is quite easy. We simply mak
D(ω) = −cosnω and the Remez algorithm can be used to solve the minimax
proximation problem as in (3). HavingCn(ω) let us modify the remaining coefficien
a∗
n−1, a

∗
n−2, . . . , a

∗
0 in the following manner:

a
(1)
k = a∗

k + �ancnk, k = 0,1, . . . , n − 1. (13)

These coefficients define a new polynomialP (1)(ω) of degreen

P (1)(ω) = an cosnω +
n−1∑
k=0

a
(1)
k coskω = P ∗(ω) + �anCn(ω). (14)

The coefficients ofP (1)(ω) are different from the optimal coefficientsa∗
k , which means

that they give the approximation error

E(1) = max
ω∈Ω

∣∣W(ω)
(
D(ω) − P (1)(ω)

)∣∣, (15)

that is greater thanE∗. The increase in the approximation error, however, is upper bou
and the upper bound is the lowest when telescoping polynomialCn(ω) is used as in (13)
This is proven formally in the following theorem.

Theorem 1. Let P (1)(ω) be a cosine polynomial of degreen defined by(14). Then its
approximation error is bounded by

E(1) � E∗ + �anEcn, (16)

whereEcn is given by(12).

Proof. The approximation errorE(1) can be rewritten as

E(1) = max
ω∈Ω

∣∣∣∣∣W(ω)

(
D(ω) − (

a∗
n + �an

)
cosnω −

n−1∑
k=0

(
a∗
k + �ancnk

)
coskω

)∣∣∣∣∣
= max

ω∈Ω

∣∣∣∣∣W(ω)

(
D(ω) −

n∑
k=0

a∗
k coskω − �an

(
cosnω + cnk

n−1∑
k=0

coskω

))∣∣∣∣∣
= max

ω∈Ω

∣∣W(ω)
(
D(ω) − P ∗(ω) − �anCn(ω)

)∣∣
� E∗ + �anEcn, (17)
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where the triangle inequality was used in the last line. SinceEcn is by definition the low-
est possible value for any cosine polynomial of degreen with leading coefficient 1, the
upper bound (16) cannot be lower for any polynomial that is different fromCn(ω). This
completes the proof. �

The theorem does not put any restrictions on the nature of the discrete setIb. It is also
easy to show that it holds for any set of functions and not only for cosine polynomials
level of generality is not needed in this paper although it may be useful in other case

The upper bound (16) is important because it demonstrates the special role of te
ing polynomialCn(ω). It is also pessimistic since it represents the worst case in whic
extremal pointsωi from (9) and (12) coincide. The actual increase in the approxima
error is usually lower than�anEcn . Nevertheless, the telescoping polynomial promi
lower increase than any other easily computed polynomial.

4. Telescoping rounding

Let us examine the polynomialP (1)(ω). Its coefficientan is finite wordlength while the
remaininga

(1)
n−1, a

(1)
n−2, . . . , a

(1)
0 are not. They can, however, be made finite wordlengt

the procedure described by (10)–(13) is applied repeatedly. The coefficienta
(1)
n−1 is replaced

by the nearest finite wordlengthan−1 ∈ Ib,

an−1 = a
(1)
n−1 + �an−1, (18)

where|�an−1| is again the lowest distance froma(1)
n−1 to a number inIb. A new telescoping

polynomial of ordern − 1 is defined as before

Cn−1(ω) = cos(n − 1)ω +
n−2∑
k=0

cn−1, k coskω. (19)

Telescoping polynomialCn−1(ω) is a solution of a minimax problem

Ecn−1 = min
cn−1, k

max
ω∈Ω

∣∣W(ω)Cn−1(ω)
∣∣, (20)

and the remaining coefficients are modified giving

a
(2)
k = a

(1)
k + �an−1cn−1, k, k = 0,1, . . . , n − 2. (21)

These coefficients define a new polynomialP (2)(ω) of degreen,

P (2)(ω) = an cosnω + an−1 cos(n − 1)ω +
n−2∑
k=0

a
(2)
k coskω. (22)

This polynomial has finite wordlength coefficientsan andan−1 while the remainingn − 1
coefficients are not finite wordlength. The above procedure is repeated for polyno
P (3)(ω),P (4)(ω), . . . ,P (n+1)(ω) and it is clear that alln + 1 coefficients ofP (n+1)(ω) are
finite wordlength. As noted in (8), the coefficienta

(n) is a special case—the nearest fin
0
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wordlength coefficienta0 must be selected from elements ofIb that are divided by 2. Not
that this does not mean that elements ofIb must be divisible by 2.

The polynomialP (n+1)(ω) represents the rounded FIR filter that we were looking
Its approximation error

EIb
= E(n+1) = max

ω∈Ω

∣∣W(ω)
(
D(ω) − P (n+1)(ω)

)∣∣, (23)

is almost always lower than the one obtained by the simple rounding of the infinite
sion coefficientsa∗

k to their nearest finite wordlength representations fromIb. It can also
be improved considerably by introducing additional search into the telescopic rou
process.

The idea for this improvement comes from the observation that in cases where|�ak| is
close to 0.5 the choice of the lowest|�ak| is not necessarily the best. The absolute distan
from an infinite precision coefficienta(i)

k to its nearest lower and upper finite wordleng
neighbors are similar and therefore both worth investigating. This differs significantly
the cases where|�ak| is close to zero. Since it is not possible to know in advance w
choice is better, both the nearest lower and the nearest upper neighbor are tried
cases—the choice that gives lowerEIb

is selected.
The notion of “close to 0.5” must be defined more precisely. It was determined e

mentally that|�ak| = 0.3 represents a suitable threshold for deciding whether to try
choices or not. Our telescoping rounding method can now be summarized in the foll
steps:

1. Compute and save the coefficients of telescoping polynomialsC1,C2, . . . ,Cn. This,
as mentioned before, can be done using the same Remez algorithm that is
compute the infinite precision coefficientsa∗

k .
2. Redefine the infinite precision coefficients as

a
(0)
k = a∗

k , k = 0,1, . . . , n. (24)

Set the indexi of the coefficient that is to be rounded next ton.
3. For coefficienta(n−i)

i compute its distance�ai to its nearest finite wordlength repr
sentation fromIb. If |�ai | > 0.3 go to step 4. Otherwise compute the finite wordlen
coefficientai = a

(n−i)
i + �ai and use telescoping polynomialCi to compute the coef

ficients of polynomialP (n+1−i)(ω),

a
(n+1−i)
k = a

(n−i)
k + �aicik, k = 0,1, . . . , i − 1. (25)

Go to step 5.
4. Both lower and upper neighbors ofa

(n−i)
i must be tried. Use�ai first and compute

telescoping polynomialsP (n+1−i)(ω),P (n+2−i)(ω), . . . ,P (n+1)(ω) as described b
(21)–(23). All n + 1 coefficients ofP (n+1)(ω) are finite wordlength and its approx
mation errorEIb

is computed and saved. If�ai < 0 change�ai to �ai +1, otherwise
change it to�ai − 1. Repeat the procedure with the changed�ai and compute the
correspondingEIb

. If it is lower than the previous one, compute the finite wordlen

coefficientai = a
(n−i)
i + �ai and the coefficients (25) using the changed�ai . Other-

wise use the starting�ai .
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5. Replace indexi by

i ← i − 1. (26)

Return to step 3 ifi � 1. Otherwise the coefficientsak, k = 0,1, . . . , n , are all finite
wordlength and we have obtained the rounded polynomial.

The most time consuming part of the telescoping rounding method are two com
tions ofEIb

in step 4. Computing the coefficients of telescoping polynomialsCk in step 1
may seem substantial since it requiresn applications of the Remez algorithm, but is in fa
modest. It is easy to see that the number of operations grows polynomially withn and not
exponentially as is the case with optimal finite wordlength algorithms. The total time
most negligible when compared to the time needed for a typical optimal finite wordle
solution.

The idea of searching for the best�ai can be extended to two or more coefficien
A two coefficient version of the method that searches simultaneously along�ai and�ai−1
was implemented and tested. A direct extension of the one coefficient method would
compute

a
(n+1−i)
i−1 = a

(n−i)
i−1 + �aicii−1, (27)

if |�ai | > 0.3 and then compute�ai−1. If there is also|�ai−1| > 0.3 approximation er-
ror EIb

is computed for all four combinations of lower/upper neighbors ofa
(n−i)
i , a

(n+1−i)
i−1

and the�ai that gives the lowestEIb
is selected. Otherwise the procedure would rem

the same as described in the one coefficient method. Although this works, the exper
have shown that it is better to use the criterion|�ai + �ai−1| � 1.2. Approximation er-
ror EIb

is computed only for those combinations of lower/upper neighbors that satisf
criterion and the�ai that gives the lowestEIb

is selected. The reason for better perf
mance of this criterion lies in the fact that it takes into account the property that opp
signs of�ai and�ai−1 tend to produce approximation errors which, to a certain ex
cancel each other. Other criteria were tried and none performed better.

The two coefficient version is approximately two times slower than the one coeffi
version. The corresponding rounded polynomial is usually, but not always, better th
polynomial obtained by the one coefficient method. It follows from (24)–(27) that
possible to construct a set of infinite precision coefficientsa∗

k that give a one coefficien
rounded polynomial that is better than a two coefficient rounded polynomial. We the
combined both methods and used the two coefficient polynomial only if it is better.

The amount of computation for a three coefficient version again increases by a
of two and the same exponential increase follows for four or more coefficient search
three coefficient version was tested and abandoned because the results show that
rarely better than the two coefficient version.

5. Results

Fifteen filters with five different sets of frequency-domain specifications, denotA

throughE, were used for testing. The frequency specifications are identical to thos
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Table 1
The five sets of filter specifications. The frequency
edges are divided by 2π

Filter Band 1 Band 2 Band 3

A
Edges 0–0.2 0.25–0.5
D(ω) 1 0
W(ω) 1 1

B
Edges 0–0.2 0.25–0.5
D(ω) 1 0
W(ω) 1 10

C
Edges 0–0.12 0.2–0.34 0.42–0.5
D(ω) 1 0 1
W(ω) 1 1 1

D
Edges 0–0.12 0.2–0.34 0.42–0.5
D(ω) 1 0 1
W(ω) 1 10 1

E
Edges 0.01–0.21 0.26–0.49
D(ω) 1 0
W(ω) 1 1

were used in Ref. [7] and are given in Table 1.A is a low-pass filter with unit weighting i
both bands.B is the same, except that the stopband has a weighting of 10.C is a bandstop
filter with unit weighting in all bands, whileD has a weighting of 10 in stopband.E is a
low-pass filter whose passband and stopbands do not includeω = 0 orπ .

We denote by A35/8 the filter design problem for specificationA, length N = 35
(n = 18 independent coefficients), andb = 8 bits (sign included); similarly for A45/8
B35/9, and so on. Table 2 shows a summary of the results, comparing the infinite
sion approximation errorE∗ and the finite wordlength approximation errorsEIb

obtained
by different methods. The following methods are included: simple rounding to the ne
one coefficient telescoping rounding, two coefficient telescoping rounding, and the o
finite wordlength design.

The last column gives the relative quality of the two coefficient telescoping roun
The results show that it is within 90% of the optimal solution in 12 out of 15 examples
there are also two examples (C35/8 and D125/22) in which they are equal. IntegerIb

and a constant scaling factors = 2b−1 were used in all examples. This scaling was cho
for simplicity as well as to allow easier comparison with the older results.

As expected, both telescopic rounding methods are consistently better than the
rounding to the nearest. The two coefficient telescoping method is better than the o
efficient method in 10 out of 15 filters, although the difference is often small. It is prob
worth using since it is still quite fast. The computing time for the two coefficient teles
ing rounding for all 15 filters was less than 5.1 s. Compare this with 2462 s that
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Table 2
Comparison of approximation errors using a constant scaling factors = 2b−1

Filter E∗ Rounding to
nearestEIb

One coefficient
telescopicEIb

Two coefficient
telescopicEIb

OptimalE∗
Ib

Relative
qualityE∗

Ib
/EIb

A35/8 0.01594584 0.03266230 0.03266230 0.03266230 0.02983816 0.91
A45/8 0.00712762 0.03701502 0.03186462 0.03186462 0.02962304 0.93
A125/21 0.00000797 0.00001532 0.00001248 0.00001179 0.00001077† 0.91†

B35/9 0.05271937 0.15891206 0.09709565 0.07851429 0.07709547 0.98
B45/9 0.02104800 0.11718750 0.06640625 0.06640625 0.05679037 0.86
B125/22 0.00002489 0.00004675 0.00003322 0.00003293 0.00002959† 0.90†

C35/8 0.00262898 0.04687500 0.01787084 0.01787084 0.01787084 1.00
C45/8 0.00066997 0.03045225 0.02287919 0.02103044 0.01609009 0.77
C125/21 0.00000001 0.00000878 0.00000220 0.00000210 0.00000206† 0.98†

D35/9 0.01043321 0.12197080 0.03368525 0.03368525 0.03252775 0.97
D45/9 0.00223461 0.10904023 0.03224953 0.02859819 0.02612254 0.91
D125/22 0.00000004 0.00004034 0.00000380 0.00000216 0.00000216† 1.00†

E35/8 0.01760590 0.04692227 0.04221047 0.03399270 0.03299053 0.97
E45/8 0.00653752 0.03577490 0.03549788 0.03403126 0.02887703 0.85
E125/21 0.00000787 0.00001429 0.00001158 0.00001127 0.00001034† 0.92†

needed to compute all 15 optimal finite wordlength filters (time for each of theN = 125
filters was limited to 600 s). A 2.4 GHz Pentium 4 PC was used as a platform fo
experiments.

Knowing the optimal finite wordlength approximation errorE∗
Ib

is of course necessar
for evaluation of any rounding method. This creates a problem when long filters are
because it is impossible to find the optimal solution in a reasonable time. Such is th
of lengthN = 125 filters which were included to demonstrate that the telescoping me
also works for long filters. The valuesE∗

Ib
for N = 125 are marked by† to indicate that

they are estimates that were obtained after 600 s of computation and were not prove
optimal.

The long finite wordlength filters deserve an additional comment. It has been s
in Ref. [8] that for a given number of bitsb there exists a nonzero lower bound on
approximation error, below which it is not possible to go, no matter how large the lengN .
Furthermore, it is possible to demonstrate that for all optimal finite wordlength filters
exists an indexl beyond which the optimal finite wordlength coefficientsak are all zero.
Or formally

ak = 0, k � l + 1, (28)

wherel is a function ofb and of desired frequency response. No method for comput
of l is known at this time, although it can be determined experimentally. For exa
the optimal finite wordlength filter D45/9 in Table 2 is in fact of length 39—the remain
coefficients are zero. Increasing its length to, say,N = 301 would only give additional zer
coefficients. This means that designing long finite wordlength filters is appropriate o
a correspondingly large number of bitsb is used. Such is the case ofN = 125 filters in our
examples where 21 and 22 bits were used.

To further demonstrate the effectiveness of telescoping rounding method, we also
it on a more complicated case of variable scaling factors. The optimal scaling factorsopt
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can be obtained together with the optimal finite wordlength coefficients ifs is included as
a variable in the minimax approximation problem (5)

min
s,P (ω)

max
ω∈Ω

∣∣W(ω)
(
D(ω) − sP (ω)

)∣∣, (29)

whereP(ω) is the finite wordlength polynomial. This problem is significantly more
ficult to solve than the one in whichs is a constant. A much simpler method that give
good suboptimals is obviously needed when rounding is used. We use a heuristic t
similar to the one used in Ref. [9] and can be used with any rounding method. Its d
depend somewhat on the nature of discrete setIb. A version for integer setIb that was used
in our experiments is described in the following steps:

1. Starting withs = 2 use (6) to compute the scaledD(ω), W(ω) and use the Reme
algorithm to compute the infinite precision coefficientsa∗

k . Rounda∗
k to the finite

wordlengthak ∈ Ib using telescoping or some other rounding method. The corresp
ing approximation errorEIb

is computed and saved. The scaling factors is multiplied
by 2, the coefficientsa∗

k are again computed, rounded, andEIb
is computed. This

process is repeated until the maximum|a∗
k | exceeds the maximum integer inIb by n/2.

As noted before, coefficienta∗
0 is a special case and must be multiplied by 2 during

search for maximum|a∗
k |. The scaling factors that gave the lowestEIb

is saved ass2.
2. The power of 2 factors0 = s2 is used as a starting value for additional search upw

and downwards froms2. The integer search step∆s is defined as

∆s = max(1, s2/128). (30)

Starting withs = s2+∆s the upward search withs increasing by∆s continues until the
maximum|a∗

k | exceeds the maximum integer inIb by n/2 as in step 1. If a lowerEIb

is found, the correspondings is used as the new best scaling integers0. The highests
that was used is saved assmax and the search is repeated in the downward direc
starting withs = s2 − ∆s . The downward search stops whens falls belowsmax/2. It
follows from (6) that it is extremely unlikely for suchs to improveEIb

because the
give the coefficientsa∗

k which are 1/2 of those that were already tried.

The basic idea is to get a rough estimate fors in step 1 and then improve it in step
Because of (30) the number ofEIb

computations is typically less than 128. The criter
“maximum integer inIb plusn/2” that is used to stop the upward search is steps 1 a
is based on the observation thatEIb

starts to grow when infinite precision coefficientsa∗
k

begin to exceed the maximum element ofIb. Then/2 part is used to ensure that this a
holds for the telescoped coefficientsa

(n−i)
k in (25). As is true for any heuristic, we do n

claim that the integers0 is the best possible integer scaling factor.
Instead of usings0 we include an additional improvement that gives a better nonint

scaling factors∗. This improvement follows from the observation that a lower value ofEIb

is available with some additional computation. Assume that for a given scaling factos all
coefficientsak are integers fromIb. The approximation errorEIb

that is given by (23) can
be reduced if the following minimax approximation problem is solved:

minmax
∣∣W(ω)

(
D(ω) − tP (n+1)(ω)

)∣∣, (31)

t ω∈Ω
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Table 3
Comparison of approximation errors using variable scaling factorss

Filter E∗ Rounding to
nearestEIb

One coefficient
telescopicEIb

Two coefficient
telescopicEIb

OptimalE∗
Ib

Relative
qualityE∗

Ib
/EIb

A35/8 0.01594584 0.02235840 0.02092188 0.02075809 0.01979400 0.95
A45/8 0.00712762 0.01628142 0.01332987 0.01332987 0.01332987 1.00
A125/21 0.00000797 0.00001025 0.00000959 0.00000939 0.00000903† 0.91†

B35/9 0.05271937 0.08009994 0.06161027 0.06008090 0.05858363 0.98
B45/9 0.02104800 0.06010068 0.03189451 0.03189451 0.03176571 0.99
B125/22 0.00002489 0.00003587 0.00002788 0.00002755 0.00002682† 0.97†

C35/8 0.00262898 0.01371235 0.01024694 0.01012225 0.01002662 0.99
C45/8 0.00066997 0.01392602 0.00967561 0.00912290 0.00847374 0.93
C125/21 0.00000001 0.00000393 0.00000112 0.00000109 0.00000109† 1.00†

D35/9 0.01043321 0.02642507 0.02102677 0.02102677 0.01917670 0.91
D45/9 0.00223461 0.04796042 0.01282368 0.01282368 0.01282368 1.00
D125/22 0.00000004 0.00001250 0.00000124 0.00000124 0.00000124† 1.00†

E35/8 0.01760590 0.02507156 0.02293072 0.02231877 0.02200041 0.99
E45/8 0.00653752 0.01659247 0.01523235 0.01491765 0.01347661 0.90
E125/21 0.00000787 0.00001023 0.00000923 0.00000916 0.00000888† 0.97†

for variablet . SinceP (n+1)(ω) is known (31) can be rewritten

min
t

max
ω∈Ω

∣∣∣∣W(ω)P (n+1)(ω)

(
D(ω)

P (n+1)(ω)
− t

)∣∣∣∣. (32)

This is a one variable minimax approximation problem. It follows from the Cheby
equioscillation theorem (9) that there are two extremal pointsω0 and ω1 at which the
approximation error achieves its maximum∣∣W(ωi)P

(n+1)(ωi)
∣∣( D(ωi)

P (n+1)(ωi)
− t∗

)
= (−1)id, i = 0,1. (33)

This is easy to solve with either the general Remez algorithm or its faster, simplifie
variable version. Solutiont∗ gives a noninteger scaling factors∗ = t∗s which gives the
reduced approximation error. It is computed in steps 1 and 2 for all instances ofEIb

com-
putation. The scaling factors∗ that gives the lowestEIb

= |d| is the result of our heuristi
and was used in experiments that are given in Table 3. Note that this method of s
factor computation was also used for the case of rounding to the nearest in column

The variable scaling factors give approximation errors that are significantly lower
those from Table 2. Both telescopic rounding methods are again consistently bette
the simple rounding to the nearest. The results show that the two coefficient teles
rounding is within 90% of the optimal solution in all 15 examples and there are also
examples (A45/8, C125/21, D45/9, D125/22) in which they are equal.

The price for much lower approximation errors is the increase in the computing
The variable scaling factor two coefficient telescoping rounding for all 15 filters took 5
Compare this with 5231 s that were needed to compute all 15 optimal finite wordl
filters with optimal scaling factor. Computing time for each of theN = 125 filters was
again limited. The limit was 1200 s and these filters were not proved to be optima
times are much longer than the constant scaling factor times for examples from Ta
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Integer setIb was used in our experiments but similar results can be expected for
discrete setsIb.

We also used the telescoping rounding to reduce the amount of computation
branch-and-bound based algorithm for optimal finite wordlength FIR filter design
reduction results from (1) having a better starting solution and (2) from using teles
rounding on selected subproblems to “guess” a possible better solution before it wo
found otherwise. The observed degree of reduction differs considerably from one pr
to another. We found that it tends to be higher for smaller problems but nevertheless
doing for all.

6. Conclusion

This paper presents a new rounding method for suboptimal finite wordlength FIR
ital filter. The method is simple to implement and produces filters that are much
than those obtained by simple rounding of coefficients to their nearest finite wordl
representation. Design examples have confirmed its effectiveness.
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