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Conditions for the Existence of Fast Number Theoretic
Transforms

DUSAN M. KODEK

Abstract-A new theorem that gives necessary and sufficient conditions for
the existence of computationally fast number theoretic transforms is presented.
The theorem combines the general conditions for the existence of number
theoretic transforms in the rings of integers modulo m with two conditions for
high computational efficiency.

Index Terns-Digital filtering, discrete Fourier transforms, fast convolution,
fast Fourier transform (FFT), Fermat number transforms, number theoretic
transforms.

I. INTRODUCTION

Several authors [1]- [4] have demonstrated the usefulness of the
discrete Fourier transforms (DFT's) defined over the rings of integers
modulo m. In particular, they can be used to compute finite discrete
convolutions without roundoff errors and with substantially fewer
operations than with the conventional complex DFT. These qualities'
have made them an attractive alternative for many applications, and
they have been used especially in digital signal processing [4], [6].
The length N DFT's defined over the ring of integers modulo m

can be written as a transform pair
N-I

X(k) - E X( NWl (mod m), k = O, 1, ,N-1I (1)
1=0

N-1I
x(l) = N-Ij X(k)Wi1k (mod m), I = 0, 1, , N - 1

k=0

(2)
and are now known in the engineering literature as number theoretic
transforms (NTT's).

II. EXISTENCE OF THE NUMBER THEORETIC TRANSFORMS

The necessary and sufficient conditions for the existence of number
theoretic transforms defined by (1) and (2) were given by Agarwal
and Burrus [4], [14] in a theorem which we include here without a
proof.

Theorem 1: Let Zm be a ring of integers modulo m, m = p p" ...

pil. A number theoretic transform of lengthN exists in Zm if and only
ifN divides the greatest common divisor of the numbers, pI - 1, P2
- 1,--,pi - 1.

This theorem is in fact a special case of a more general theorem [9],
[10], which gives conditions for the existence of a length N discrete
Fourier transform in some commutative ring with unity. The condi-
tions require that a ring contains a certain number WN, called the
primitive Nth root of unity, that is defined by

wN=1 (3)

and

Wr ,61, r =1, 2,- --,N -1I. (4)
It is also necessary that numbers w' - 1, r = 1, 2, ,N- 1, are

not divisors of zero and that there exists a multiplicative inverse N-
of N.
The conditions concerning WN become in the rings of integers

modulo m equivalent to the congruences

WN = 1 (modp'), i = 1, 2, * *-, 1 (5)
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WNltI(mod pi), i-1,2,---,;r=1,2,---,N-1 (6)

and it is not too difficult to see that Theorem 1 fulfills all of the above
conditions. This theorem has been since used as a starting point for
many subsequent results [7], [8] that extended the types and appli-
cations of number theoretic transforms. Still, it does not give any
information about the computational efficiency, and it is easy to see
that this efficiency depends heavily upon the values of parameters
N, m, and WN.

III. CONDITIONS FOR THE EXISTENCE OF FAST NTT's

Let us now limit our attention to those number theoretic transforms
that conform to the following two requirements for high computa-
tional efficiency.

1) N = 2 n. This is an obvious consequence of the FFT algorithm
which is most efficient for highly composite numbers N.

2) WN--E2g (mod m), 1, 0 < s <n- 1. Primitive roots of
this form reduce all or a part of multiplications by powers of WN to
simple and fast shifting operations. It is precisely this property of
number theoretic transforms that makes them attractive in com-
parison to other discrete Fourier transforms.
The retuirements 1) and 2) define a special subclass of number

theoretic transforms. Many NTT's that are of practical interest
belong to this subclass. For practical implementations there is,
however, the third requirement, namely the simplicity of arithmetic
modulo m. Since all operations are performed modulo m, this arith-
metic must be simple in order to achieve high computational effi-
ciency. We shall mention this problem again in the last section and
proceed here with the requirements 1) and 2).
The general conditions of Theorem 1 may now be replaced with

more specific ones that apply to our particular subclass. Let us start
with the following corollary of Theorem 1.

Corollary 1: Let Zm be a ring of integers modulo m, m = 2
*pl'. The length N = 2n NTT exists in Zm if and only if it is possible

to write all the primes pi, i = 1, 2, - * , 1, in the form pi = gi2hi + 1,
where g1 is an arbitrary odd number and hi ' n.

Proof: It follows from Theorem 1 that primes pi, i = 1, 2,**,
1, must be greater than two for the lengthN > 1 transforms to exist.
Every prime number that is greater than two can always be written
as

pi = gi2hi + 1, i = 1,2, , I (7)
where hi _ 1 and gi an odd number. The greatest common divisor of
numbers pi- 1, i = 1, 2, - - *, I can therefore be written as

(pI - 1,p2- 1, -'-,pi- 1) = c2d (8)
where c is the greatest common divisor of numbers g,, i = 1, 2, * * *,
1, and d is the smallest of the exponents hi, i = 1, 2, - * -, 1. It then
follows from Theorem 1 that length N = 2" NTT's exists exactly
when 2" divides 2d, which is true if all the exponents hi conform to
hi >- n. Q.E.D.

This corollary gives the conditions for the existence of length N =

2 n NTT's. We can now proceed with requirement 2), which requires
the existence of primitive Nth roots of the form

(9)WN= /-2,2 (modm), ,u >- 1,0 _< s _< n -1.

Numbers defined by (9) are the solutions of the congruence
y2 2'u (mod m) (10)

which is not always solvable. It is therefore necessary to check if these
numbers exist under our particular conditions. Congruence (10) has
solutions if and only if the following congruences hold [1 1 ]:

(1 1)

where di is the greatest common divisor of numbers 2S and Pi- 1.
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2,9(Pi- Wdi = I (mod pi), i = 1. 2, - - -.)I
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Since we are interested only in transforms that conform to Corollary
1, we have di = 25 and (Pi -1 )Idi = ai2n-s, i = 1, 2,,, , l.

It is now easy to see that ( 11) holds if we have

212-s 1 (mod pi), i = 1, 2,- ,l. (12)

Equation (12) guarantees the existence of the numbers WN defined
by (9). We shall show the conditions under which it is true in the proof
of the following theorem, which is the main result of this paper.

Theorem 2: Let Zm be a ring of integers modulo m, m = pn n2 ...

p7', in which all the primes pi, i = 1, 2, - , 1, can be written in the
form Pi = g,2hi + 1, where gi is an arbitrary odd number and hi _
n. The length N = 2n NTT withw=WN 2,, >1, 0 < s c n-1,
exists in Zm if and only if m divides the number 2u2n-s-I + 1.

Proof: Let us first show that (12) holds. Since m divides 2g2n-s-
+ 1 and since we can write

2.2n-s _ 1 = (2,,2n-s- + 1)(2.2ns5 - 1) (13)

we see that m divides 2j,2n-s - 1 too, and that ( 12) holds. This guar-
antees the existence of numbers 2V§

Ring Zm satisfies Corollary 1. Knowing that numbers s72 exist,
it is now enough to prove that (5) and (6) hold for WN =2./ if and
only if m divides 2A2n-s-l + 1.

Suppose first that (5) and (6) hold. Congruences (6) must hold for
all 1 _ r _ 2n- 1, and therefore also for r = 2n-1

2I2n-s- I m 1 (mod Pi), i = 1, 2, *,* 1. (14)

These congruences require that none of the primes pi, i = 1, 2, * * *
1, divides the number

n-s-2
22n-s1 1I = (2A 1) (12t + 1). (15)

1=0

At the same time it follows from (5) that

2.2n-s = 1 (mod pi'), i= 1, 2,- * (16)

which means that all of the powers p7i, i = 1, 2, -* 1, divide the
number

n-s-I
2M2n-s 1 = (2"A- 1) I (2'2 + 1); (17)

1=0

Both requirements can be fulfilled simultaneously if all of the powers
pli divide 2121-s-1 + 1. This is possible only if m divides 2A2n-s-I +
1 and we have thus proved necessity.
To prove sufficiency let us suppose that m divides 2A2n-s- + 1 and

show that congruences (5) and (6) hold. It is easy to see from (16)
and (17) that for WN = V/2A divisibility of 2u2n-s-' + 1 by m guar-
antees the validity of (5). Let us proceed with the congruences (6),
which can now be written as

.))r Il(modpi) r- ,2 1(V2,~ ~ ~ ,2" ,.(18)
Suppose that (18) does not hold and that r = e, e 2 - 1, is the
smallest exponent for which

(.2f)e I (mod p). (19)
Since we just proved that (16) is true, e must divide 2n and is therefore
of the form e = 2v. For 0 < v _ s we have

2,u 1(mod pi) (20)

which means that at least one pi divides 2,u- 1. For s + 1 _ v _ n
- 1 we have

2.2v-s = I (mod pi) (21)

which means that at least one pi divides 2A2v-s - 1. Since it is easy
to show [12] that numbers 2,u- 1, 2,i + 1, 212 + 1, * * *, 2.2n-s- +
1, are pairwise relatively prime and since modulus m divides 2g2n-,-I
+ 1, its primes Pi cannot satisfy (20) and (21). The smallest exponent
e for which ( 19) is true equals 2", which completes the proof of the
theorem. Q.E.D.

IV. DISCUSSION AND CONCLUSIONS

The main statement of the above theorem is that the requirements
1) and 2) imply that modulus m must divide the number 2g2n-1-l +
1. In comparison with the well-known conditions of Theorem 1, which
do not give a systematic way of determining the "best" choices of
parameters N, WN, and m, this result greatly simplifies the anal-
ysis.

For practical implementations we have to include the requirement
for simplicity of arithmetic modulo m. Moduli with a 2-bit binary
representation, m = 2b + 1 and m = 2b- 1, are the most obvious
choices. It is easy to see that numbers m = 2b + 1 conform to the
Theorem 2 very well. This case, however, was analyzed extensively
using the conditions ofTheorem I and it does not seem very likely that
Theorem 2 can contribute significantly to practical usefulness of these
NTT's.

Without discussing the implications of Theorem 2 for the case of
moduli with 3 or more bit binary representation, which may be of
some practical value [5], we shall conclude with the following two
observations.

1) The appearance of number two (or some power of two) as the
primitive Nth (N = 2") root of unity WN in rings Zm, m = 2b + 1,
is not explained by Theorem 1. It follows from Theorem 2 that this
is an inherent property of rings with moduli of the form m = 2b +
1.

2) The existing analysis of NTT's which conform-to requirements
1) and 2) was largely based on the conditions of Theorem 1. These
conditions do not give a way to systematic analysis and one must use
intuition, insight, and a bit of searching [14]. There is a theoretical
possibility that some efficient NTT's were overlooked. Theorem 2
virtually eliminates this possibility.

REFERENCES

[I] A. Schonhage and V. Strassen, "Schnelle multiplikation grosser zahlen,"
Comput., vol. 7, pp. 281-292, 1971.

[2] J. M. Pollard, "The fast Fourier transform in a finite field," Math.
Comput., vol. 25, pp. 365-374, Apr. 1971.

[3] C. M. Rader, "Discrete convolution via Mersenne transforms," IEEE
Trans. Comput., vol. C-21, pp. 1269-1273, Dec. 1972.

[4] R. C. Agarwal and C. S. Burrus, "Fast convolution using Fermat number
transforms with applications to digital filtering," IEEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-22, pp. 87-97, Apr. 1974.

[5] J. M. Pollard, "Implementation of number-theoretic transforms,"
Electron. Lett., pp. 378-379, July 22, 1976.

[6] J. H. McClellan, "Hardware realizations of a Fermat number trans-
form," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-24,
pp. 216-225, June 1976.

[7] E. Vegh and L. M. Leibowitz, "Fast complex convolution in finite rings,"
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-24, pp.
343-349, Aug. 1976.

[8] H. J. Nussbaumer, "Digital filtering using pseudo Fermat number
transforms," IEEE Trans. Acoust. Speech, Signal Processing, vol.
ASSP-25, pp. 79-83, Feb. 1977.

[9] D. Kodek, "Mathematical conditions for the existence of very fast dis-
crete Fourier transform," in Proc. 1976 Inform. Int. Symp., Bled, Yu-
goslavia, Oct. 1976, p. 3120.

[10] P. J. Nicholson, "Algebraic theory of the finite Fourier transform," Ph.D.
dissertation, Dep. Oper. Res., Stanford Univ., Stanford, CA, 1969.

[11] I. Niven and S. Zuckerman, An Introduction to the Theory ofNumbers.
New York: Wiley, 1960, pp. 43-50.

[12] G. M. Hardy and E. M. Wright, An Introduction to the Theory of
Numbers. Oxford, England: Oxford Univ. Press, 1962, p. 14.

[13] E. Dubois'and A. N. Venetsanupoulos, "The discrete Fourier transform
over finite rings with application to fast convolution," IEEE Trans.
Comput., vol. C-27, pp. 586-593, July 1978.

[14] R. C. Agarwal and C. S. Burrus, "Number theoretic transform to im-
plement fast digital convolution," Proc. IEEE, vol. 63, pp. 550-560,
Apr. 1975.

[15] D. Kibler, "Necessary and sufficient conditions for the existence of the
modular Fourier transform: Comments on 'Number theoretic transforms
to implement fast digital convolution,'" Proc. IEEE, vol. 65, pp.
265-267, Feb. 1977.

360


