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In practical FIR digital filter applications it is often necessary to represent the filter coefficients with
a finite number of bits. The optimal finite wordlength coefficients have an interesting property. For
all finite wordlength filters there exists a maximum filter length Nmax and the corresponding cosine
polynomial degree nmax . Increasing the filter length N beyond Nmax gives additional coefficients that
are all zero. A theoretical explanation for the existence of Nmax is given in the paper. The influence of
the filter specifications on Nmax is investigated. In addition, a simple method that gives a reasonably
accurate estimate of Nmax is also given. Knowing Nmax and its relationship to the filter specifications is
important in the finite wordlength FIR design because it can reduce the time needed to compute the
optimal coefficients.
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1. Introduction

There are many practical situations in which the coefficients of
an FIR digital filter must be represented with a finite number of
bits. This requires that the “infinite precision” coefficients are re-
placed by the finite wordlength ones. If we wish to use a fixed
point DSP processor, which is almost always cheaper and/or faster
than a floating point one, we would like to meet the filter specifi-
cations with coefficients that are represented with a small number
of bits b.

An interesting phenomenon was observed when optimal filters
with b-bit coefficients were computed [1]. It was found that be-
yond a certain length all coefficients are always zero. This means
that it is not possible to meet arbitrarily severe FIR filter spec-
ifications with a small number of bits b by increasing the filter
length N . This phenomenon was further studied in [2,3]. For all fi-
nite wordlength filters there exists a maximum filter length Nmax .
If the filter length N is increased beyond Nmax , the additional co-
efficients are all zero. Obviously, these filters do not get any better
by using N > Nmax . The time needed to compute the optimal coef-
ficients, however, increases considerably.

The fact that a length limit exists was established experimen-
tally and is perhaps somewhat surprising. Such a limit does not ex-
ist if the finite wordlength restriction is removed. The Weierstrass
theorem [4] assures us that the minimax approximation error goes
towards zero when N → ∞. This is not the case if the filter coeffi-
cients are constrained to b bits.

Note that the simple idea of finding Nmax by computing a large
N filter and then rounding the coefficients to their nearest b-bit
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representation does not work. The rounded b-bit coefficients will
certainly be zero from some Nx on. The problem is that this Nx is
practically always much higher than the true Nmax . In typical cases
it was between two or three times higher than Nmax . Obviously,
we need something better.

No quick and simple method that finds Nmax is known, and this
remains an interesting open problem which has received little at-
tention in the literature. This is not surprising. Approximation of
functions by polynomials with coefficients which are integers is
famous for being very hard. Ferguson [5] gives a sampling of diffi-
culties and some of the more accessible results. These results have
some bearing on our problem which is a special case of a gen-
eral integer polynomial approximation. It is quite different from
the general case. The polynomial is a cosine polynomial, the inter-
val is a union of disjoint subsets, and there is an additional weight
function which can be different in every subset. It appears that
there are no mathematical papers that deal with this particular
approximation problem.

The problem of finding Nmax , and the corresponding cosine
polynomial degree nmax , is important both for theoretical and for
practical reasons. A theoretical explanation is needed to under-
stand why it exists at all. Knowing Nmax and nmax , even if only ap-
proximately, is important for practical reasons since it can reduce
the time needed to compute the optimal finite wordlength coeffi-
cients. The designer would also often like to know how the filter
specifications like the width of bands and transition or don’t care
bands, the weight function, and the number of bits affect nmax . It is
the purpose of this paper to give some answers to these questions.

The outline of the paper is the following: In Section 2 we re-
call the basic facts about the finite wordlength design problem.
We then show that the number of nonzero filter coefficients is fi-
nite in Section 3. In Section 4 we consider a cosine polynomial
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with real coefficients of degree n to which an integer coefficient
of degree nx , nx > n, is added. We prove that a degree nf max ex-
ists for which adding an integer coefficient always increases the
approximation error if n � nf max . For standard filters nf max can
be investigated more precisely. This is done in Section 5. Practi-
cal search for nmax requires a bound on the maximum number of
consecutive zero coefficients. A simple formula that gives an esti-
mate nczer for this bound is derived in Section 6. In Section 7 we
demonstrate that nf max can be used to predict nmax and then use
nczer to verify the prediction by computing the true nmax .

2. The finite wordlength design problem

Let us start with the infinite precision design problem. We limit
our attention to linear phase filters with real-valued coefficients
although it will be shown that Nmax almost certainly exists for
nonlinear phase filters too. Details are more complicated which is
also true for filters with complex coefficients. The frequency re-
sponse H∗(ω) of a length N optimal infinite precision (i.e., filter
coefficients can be any real number) linear phase FIR digital filter
is equal to

H∗(ω) =
N−1∑
k=0

h∗(k)e− jωk

= e j(L π
2 − N−1

2 ω) Q (ω)

n∑
k=0

a∗
k cos kω (1)

where L = 0 or 1. Depending on N and filter symmetry there are
exactly four types of FIR filters and four real functions Q (ω). The
degree n of the cosine polynomial

P∗
n(ω) =

n∑
k=0

a∗
k cos kω (2)

is related to the filter length N and there are formulas which relate
the optimal coefficients h∗(k) and a∗

k . Function Q (ω) is irrelevant
from the point of view of the approximation problem and will be
ignored. To find P∗

n(ω) one must solve the following minimax ap-
proximation problem

min
Pn(ω)

max
ω∈Ω

∣∣W (ω)
(

D(ω) − Pn(ω)
)∣∣. (3)

The real function D(ω) is the desired frequency response, the
weighting function W (ω) is by definition real and positive, and
the set Ω is a subset, or a union of subsets, of the interval [0,π ].

The standard approach to solving (3) is to use the Remez al-
gorithm in a way that was first described by Parks and McClel-
lan [6]. The problem becomes much more complex when the finite
wordlength constraint is introduced. Although there seems to be
no formal proof that it is NP-hard, this is almost certainly so.

For the purpose of this paper we will make the finite word-
length constraint equal to requesting that the filter coefficients
h(k) are b-bit integers from the set Ib , where Ib = {−2b−1, . . . ,−1,

0,1, . . . ,2b−1}. The integer set Ib is chosen for convenience only —
any other finite set of b-bit numbers (sums of a limited number
of power-of-two terms, for example) can be used instead. Con-
straining the coefficients h(k) to the set Ib requires a redefinition
or scaling of the original infinite precision approximation problem.
This is necessary to bring the coefficients h(k) within the range of
numbers in Ib and can be done with the help of a scaling factor s.
Let us assume that s is known and denote as Du(ω), Wu(ω), and
Pnu(ω) the original (unscaled) problem. The approximation prob-
lem that gives the optimal b-bit approximation error of degree n
can be written as
Emin(n) = min
Pnu(ω)

max
ω∈Ω

∣∣∣∣ Wu(ω)

s

(
sDu(ω) − sPnu(ω)

)∣∣∣∣
= min

Pn(ω)
max
ω∈Ω

∣∣W (ω)
(

D(ω) − Pn(ω)
)∣∣ (4)

where the scaled functions D(ω) and W (ω) are defined as

D(ω) = sDu(ω), W (ω) = Wu(ω)/s. (5)

The finite wordlength polynomial Pn(ω) equals

Pn(ω) = sPnu(ω) =
n∑

k=0

ak cos kω, ak ∈ Ib, a0 ∈ Ib/2, (6)

and Ib/2 denotes the set Ib in which all elements are divided by 2.
Observe that ak ∈ Ib and a0 ∈ Ib/2 in (6) which means that the co-
efficient a0 is a special case. This follows from the requirement that
all h(k) must be in Ib and for type 1 (odd N , positive symmetry)
FIR filters we have

h(n) = 2a0, n = (N − 1)/2

h(n − k) = h(n + k) = ak, k = 1,2, . . . ,n (7)

where 2a0 and ak are from Ib . It follows from (7) that H(ω) will
be multiplied by 2s. The formulas for type 2, 3, and 4 FIR filters
are somewhat more complicated but the conclusions are similar.

The scaling factor s can be interpreted as the filter gain. Its
choice is not trivial and is described in [7–9]. Two approaches are
typically used in practice:

1. The scaling factor s is included in the approximation prob-
lem (4) as a variable. This gives the optimal scaling factor and
the lowest approximation error but makes solving (4) signifi-
cantly more difficult.

2. A constant scaling factor s determined by some ad hoc method
is used.

Since we are only interested in determining the maximum fil-
ter length Nmax and the corresponding polynomial degree nmax ,
we will assume that s is a known constant. Notation Pn(ω) will
from here on denote a polynomial with b-bit coefficients ak ∈ Ib ,
k = 0,1, . . . ,n, whereas D(ω) and W (ω) are the scaled input func-
tions. We begin by proving that the number of nonzero b-bit coef-
ficients ak is always finite.

3. The number of nonzero coefficients ak is finite

For any real sequence x(k) of length N the discrete version of
the Parseval theorem [10] states

N−1∑
k=0

x2(k) = 1

N

N−1∑
m=0

∣∣X(m)
∣∣2

(8)

where

X(m) =
N−1∑
k=0

x(k)e− 2π jkm
N . (9)

X(m) is simply the frequency response of x(k) computed at ω =
2πn/N . If we use h(k) instead of x(k), (8) becomes

N−1∑
k=0

h2(k) = 1

N

N−1∑
m=0

∣∣∣∣Pn

(
2πm

N

)∣∣∣∣
2

(10)

where Pn(ω) is defined by (6). It follows from (4) that |Pn(ω)| is
bounded by
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∣∣Pn(ω)
∣∣ �

∣∣D(ω)
∣∣ + Emin(n)

W (ω)
, ω ∈ Ω (11)

where Emin(n)/W (ω) is by definition positive. Since Ω is a subset,
or a union of subsets, of the interval [0,π ], some of the frequen-
cies ω = 2πm/N may not belong to Ω .

The missing parts of the interval [0,π ] are called transition or
don’t care bands and the FIR filter specifications typically do not
define D(ω) and W (ω) in these bands. The reason for this is that
it is easier, and almost always better, to let the approximation al-
gorithm find the Pn(ω) in the don’t care bands. In this paper we
assume that the filter specifications are such that there exists a
positive number C that upper bounds Pn(ω) as

∣∣Pn(ω)
∣∣ � C, ω ∈ [0,π ]. (12)

For filters that do not have peaks in don’t care bands C is given
by (11). For other filters C is larger but finite.

In what follows D(ω) and W (ω) are known continuous func-
tions defined over the complete interval [0,π ]. Obviously, their
values in the don’t care bands can always be computed exactly af-
ter the filter coefficients are known. The practicality of such D(ω)

and W (ω) definitions is not important for our purpose. Inserting
(12) into (10) gives

N−1∑
k=0

h2(k) � C2, h(k) ∈ Ib. (13)

This also holds for nonlinear phase filters which is an indication
that Nmax exists for them too. Details, however, are different be-
cause (7) holds for linear phase only and gives

(2a0)
2 +

n∑
k=1

a2
k � C2, ak ∈ Ib, a0 ∈ Ib/2 (14)

where n = (N − 1)/2. Assume now that n → ∞. Since C does not
increase with increasing n and since the coefficients ak are integers
from Ib , Eqs. (13) and (14) prove that there can be only a finite
number of nonzero b-bit coefficients ak and h(k).

No such limit exists if ak are not constrained to integer values.
Eqs. (13) and (14) still hold, but the sum of a2

k does not become
infinite when n → ∞ because ak converge to zero.

4. The number of consecutive zero coefficients ak is small

Knowing that the number of finite wordlength nonzero coeffi-
cients ak is finite is important. However, this only tells that a finite
nmax exists. It could, in principle, be a very large number. In partic-
ular, it is easy to see that (14) does not exclude a situation where
there exists a large number of consecutive zero ak before the last
nonzero one. To prove that the best integer polynomial Pn(ω) can-
not have many zero coefficients before the last nonzero one, we
need to look deeper into the properties of polynomial minimax
approximation.

Function D(ω) is by definition even and can always be written
as

D(ω) =
∞∑

k=0

ck cos kω (15)

where ck are Fourier coefficients

c0 = 1

π

π∫
0

D(ω)dω, ck = 2

π

π∫
0

D(ω) cos kωdω, k � 1.

(16)
If the function D(ω) satisfies the Dini–Lipschitz condition on
[0,π ], which is practically always true in filter design cases, then
the sum (15) converges uniformly and ck converge to zero [11].

For the derivations that follow in this and the next section we
will temporarily remove the integer constraint from Pn(ω). The
cosine polynomial Pn(ω) of degree n that approximates (4) is not
constrained to integer coefficients. The following lower bound on
Emin(n) can be found in [12]

Emin(n) � π

4
max

k�n+1

( |ck|
Bk

)
. (17)

For W (ω) = 1 the constants Bk equal 1 for all k. Otherwise they
can be computed with a formula1

Bk =
π∫

0

| cos kω|
2W (ω)

dω, k � n + 1. (18)

For functions W (ω) that are typical in filter design the values of
Bk are easy to compute. They are almost independent of k and it
follows from (5) that they are a function of the scaling factor s
which is in turn proportional to 2b−1.

Since we are only interested in proving that there cannot be
many consecutive zero coefficients ak , the exact values of Bk are
not very important. Let k = nx be the index of the nonzero integer
coefficient and let ak , k = n + 1,n + 2, . . . ,nx − 1, be equal to zero.
It is easy to see that this is equivalent to approximation of the
function

F (ω) = D(ω) + anx cosnxω, anx ∈ Ib, nx � n + 1 (19)

where anx is the nonzero integer coefficient. The corresponding
approximation problem with nx − n − 1 consecutive zeros is equiv-
alent to the following problem of degree n, n < nx ,

EF min(n) = min
Pn(ω),anx

max
ω∈[0,π ]

∣∣W (ω)
(

F (ω) − Pn(ω)
)∣∣ (20)

where D(ω) and W (ω) are scaled functions defined in (5).
Coefficient anx in (20) can in principle increase or decrease ap-

proximation error EF min(n) relative to Emin(n). We will prove that
for every filter specification there exists a degree nf max such that
EF min(n) > Emin(n) for all n � nf max .

The function F (ω) is even and can be written as

F (ω) =
∞∑

k=0

dk cos kω (21)

where dk are Fourier coefficients. Fourier transform is linear and it
follows from (16) and (19) that dk = ck for all k with the exception
of k = nx for which

dnx = cnx + anx . (22)

Using (17) the lower bound on EF min(n) equals

EF min(n) � π

4

( |dnx |
Bnx

)
� π

4

( |anx | − |cnx |
Bnx

)
(23)

where an integer anx that gives the lowest bound must be used.
Since anx is a nonzero integer and since the coefficients ck con-
verge to zero, EF min(n) converges to

L = π

4

(
1

B∞

)
(24)

with increasing nx .

1 The bound in [12] does not use W (ω). Including an arbitrary positive weight
function W (ω) is simple and follows from the derivation of the bound.
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It is now easy to show that the optimal polynomial cannot
have any nonzero integer coefficients after an if n is high enough.
This follows from the fact that Emin(n) decreases with n whereas
EF min(n) stops decreasing when nx is high enough. This in turn
means that (23) ensures that there exists a degree n = nf max for
which

EF min(n) > Emin(n), n � nf max (25)

for all nx � nf max + 1. In other words, adding an integer coefficient
anx always increases the approximation error if n � nf max . The op-
timal polynomial Pn(ω),n � nf max , therefore cannot have one or
more nonzero integer coefficients after anf max . Even though the co-
efficients of Pn(ω) are real, this conclusion obviously also holds
for integer Pn(ω) because EF min(n) can only be higher if the coef-
ficients are constrained to integers. This also means that the limit
L for the integer Pn(ω) is higher than the one given by (24). An-
other difference is that this limit and nf max are much harder to
find for integer Pn(ω).

Finding nf max for non-integer Pn(ω) is a simple matter. How-
ever, the first n satisfying EF min(n) > Emin(n) does not automati-
cally equal nf max . The rate of convergence of Fourier coefficients
ck depends on the function D(ω), and the sequence of coefficients
ck is not necessarily monotone. Correspondingly, the convergence
of EF min(n) to L also does not have to be monotone. For exam-
ple, functions D(ω) which are common in the filter design cases
often have ck = 0 for even k. The condition EF min(n) > Emin(n)

must therefore be examined for several values n before nf max is
found. Since Emin(n) typically decreases faster than EF min(n) the
nf max is usually found when EF min(n) is still quite far away from
its limit L.

5. Improved bound for piecewise constant D(ω) and W (ω)

The bounds (23) and (24) hold for arbitrary functions D(ω) and
W (ω). The only restriction is that the Fourier coefficients of D(ω)

converge to zero which is practically never a problem. For standard
frequency selective filters (lowpass, highpass, bandpass, bandstop)
the functions D(ω) and W (ω) are piecewise constant. Such func-
tions allow a more accurate estimate of limit L and also allow an
insight into the influence of filter specifications on nf max .

Let us define Gn(ω) as the cosine polynomial of degree n which
is the best weighted minimax approximation of F (ω) on the nx +1
points ω0,ω1, . . . ,ωnx defined by

ω� = �π

nx
, � = 0,1, . . . ,nx. (26)

This particular set of points plays a special role in our derivation.
We use nx = n + 1 and by the alternation theorem Gn(ω) satisfies

δ
(−1)i

W (ωi)
= F (ωi) − Gn(ωi), i = 0,1, . . . ,nx. (27)

Since Gn(ω) is the best approximation on the ω� defined by (26)
and not on ω ∈ [0,π ], it is not equal to Pn(ω) from (20). But the
set (26) is a subset of [0,π ] which means that the approximation
error EF min(n) cannot be lower than δ. We have

EF min(n) � |δ| = ∣∣W (ωi)
(

F (ωi) − Gn(ωi)
)∣∣. (28)

Because EF min(n) increases with decreasing n, (28) holds for all
n < nx . To get a bound for δ we follow an approach used in [12]
and define the operator

∑′′ where the primes indicate that the
first and last terms in the sum are to be halved. We then multiply
(27) by cosnxωi and apply the operator

∑′′ to both sides
δ

nx∑′′

i=0

(−1)i

W (ωi)
cosnxωi =

nx∑′′

i=0

F (ωi) cosnxωi

−
nx∑′′

i=0

Gn(ωi) cos nxωi . (29)

Now Gn(ω) is a cosine polynomial of degree n, n < nx , and the
term containing it can be written as

nx∑′′

i=0

Gn(ωi) cosnxωi =
nx∑′′

i=0

n∑
k=0

a′
k cos kωi cosnxωi (30)

where a′
k are the coefficients of Gn(ω). The sum

nx∑′′

i=0

cos kωi cosnxωi (31)

equals zero for all k < nx [13]. Hence in (29) the term with Gn(ωi)

vanishes. For other terms observe that on the set (26) cos nxωi =
(−1)i . Using the definition (19) for F (ω) makes (29) equal to

δ

nx∑′′

i=0

1

W (ωi)
=

nx∑′′

i=0

(
(−1)i D(ωi) + anx

)
(32)

and

δ = 1∑′′nx
i=0

1
W (ωi)

(
nxanx +

nx∑′′

i=0

(−1)i D(ωi)

)
. (33)

Assume without loss of generality that W u(ω) � 1 which from
(5) gives W (ω) � 1/s. The sum containing 1/W (ωi) equals snx

if Wu(ω) = 1. For any other W u(ω) the sum is always lower
than snx . Since D(ω) is piecewise constant, the sum containing
D(ωi) is almost independent of nx . This means that its contribu-
tion converges to zero with increasing nx and δ converges to

δ = nxanx∑′′nx
i=0

1
W (ωi)

. (34)

We see from (28) that EF min(n) � |δ| and because anx is a nonzero
integer EF min(n) converges to

L = nx∑′′nx
i=0

1
W (ωi)

(35)

with increasing nx . There is always L � 1/s and L becomes al-
most independent of nx with increasing nx . This bound was derived
without the help of Fourier coefficients and also gives higher val-
ues than (24). As in (24) the convergence to L is typically not
monotone because the sum containing D(ωi) in (33) can change
sign. The constant B∞ from (24) is similar, but not identical, to the
sum in (35). Still, the conclusions that follow are identical to those
that were described in connection with (23). EF min(n) stops de-
creasing when nx is high enough which confirms again that nf max
exists. Observe that the limit L depends on the scaling factor s
which is included in W (ω). The scaling factor is proportional to
2b−1 which means that L decreases with the number of bits b. As
expected, degree nf max will increase with b.

6. Computing an estimate for the maximum number of
consecutive zero coefficients ak

We will demonstrate in Section 7 that nf max can be used to pre-
dict nmax . To see how good this prediction is requires that we know
the true nmax . There is a problem here. The only known method
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that finds the true nmax is to solve the finite wordlength polyno-
mial problem (4) for n = 1,2, . . . , and so on. From some n on the
coefficients ak , k > n, will start to be all zero. How do we know
when we can stop the search and declare that n = nmax? It is clear
that we need a bound on the maximum number of consecutive
coefficients ak before the last nonzero one.

The way to this bound follows from the observation derived in
(24) and (35) that EF min(n) cannot decrease if a nonzero coeffi-
cient of degree nx is added after a string of zero coefficients. The
piecewise constant functions D(ω) and W (ω) simplify the search
for bound. Consider the following approximation problem

min
ak

max[0,π ]

∣∣∣∣∣K + anx cosnxω −
n∑

k=0

ak cos kω

∣∣∣∣∣ (36)

where nx > n and K is an arbitrary constant. The solution of this
problem a0 = K and ak = 0 for k = 1, . . . ,n is well known [14]. It
gives the error function e(ω) = anx cos nxω which has nx + 1 ex-
tremal points with alternating sign

e(ωi) = −e(ωi+1), i = 0,1, . . . ,nx − 1 (37)

where ωi = iπ/nx and |e(ωi)| = 1. The alternation theorem states
that the necessary and sufficient condition for the best polynomial
approximation of degree n is that the error function e(ω) exhibit
at least n+2 extremal points ωi with the alternating property (37).
Because nx > n, this solution clearly fulfills this condition.

The problem (36) demonstrates the inability of lower degree
cosines to approximate a higher degree cosine. It is indeed possi-
ble to state that this is the underlying reason for the existence of
both nmax and nf max . Our approximation problem (20) is of course
more complicated, but there are similarities. If each of the piece-
wise constant sections of D(ω) is observed separately, they lead to
approximation problems that are similar to (36). Let us examine
the band with the maximum W (ω) and denote its weight as

Wmax = max
ω∈[0,π ] W (ω). (38)

The number of extremal points that the optimal solution has in
this band will in general depend on its width and also on D(ω),
W (ω), n, and nx . If nx is high enough at least one of the extremal
points will be in this band. We again use the frequency points (26)
and denote the set of frequencies ω� that belong to this band as
Ωwx . Because there are extremal points in Ωwx , (28) can be rewrit-
ten as

EF min(n) � |δ| = Wmax max
ω�∈Ωwx

∣∣F (ω�) − Gn(ω�)
∣∣. (39)

Using the definition (21) the term containing F (ω�) − Gn(ω�)

equals

max
ω�∈Ωwx

∣∣∣∣∣D(ω�) + anx cosnxω� −
n∑

k=0

gk cos kω�

∣∣∣∣∣ (40)

where gk are the coefficients of polynomial Gn(ω). D(ω�) is con-
stant in Ωwx , and we have a case that is similar to the one in (36).
There are two differences, however. The first one is that only a
subset Ωwx of the interval [0,π ] is used. The second is that Gn(ω)

must approximate D(ω) in other bands too. This means that only
a part of the polynomial degree n can be used to minimize (40).

We wish to examine the effect of the maximum weight Wmax

on the polynomial Gn(ω) that gives the optimal EF min(n). Let
G∗

n(ω) be a cosine polynomial with g∗
0 = D(ω�) and g∗

k = 0,
k = 1, . . . ,n. We denote the number of frequencies ω� in Ωwx as
nΩ wx . For this G∗

n(ω) the error function is
e∗(ω�) = Wmax
(

D(ω�) + anx cosnxω� − G∗
n(ω�)

)
= Wmaxanx(−1)�, � = �x1, . . . , �x2 (41)

where �x1 and �x2 are the indices of the first and last ω� in
Ωwx . Suppose that a polynomial which is better than G∗

n(ω) exists.
Without loss of generality we let G∗

n(ω) + Rn(ω) be the best poly-
nomial. Hence the reduction of approximation error is obtained
and there must be

∣∣e∗(ω�) − Rn(ω�)
∣∣ < |Wmaxanx |, � = �x1, . . . , �x2. (42)

It follows from (42) that the sign of e∗(ω�) is the same as the
sign of Rn(ω�) for all ω� ∈ Ωwx . This means that G∗

n(ω) is the best
approximation if there is no polynomial Rn(ω) that satisfies the
condition

e∗(ω�)Rn(ω�) > 0, � = �x1, . . . , �x2. (43)

Observe that Rn(ω) is a cosine polynomial of degree n and there-
fore cannot have more than n changes of sign on [0,π ]. But e∗(ω)

changes sign nΩ wx − 1 times in Ωwx and this number is increas-
ing with nx . It follows that Rn(ω) satisfying (43) never exists if
nΩ wx − 1 > n and this in turn means that Gn(ω) = G∗

n(ω) is the
best polynomial. It now follows from (39) that for a given n there
always exists nx giving

EF min(n) � Wmax. (44)

A pathological case occurs for filters that have a very large Wmax

in stopbands (D(ω) = 0). For such filters the optimal polynomial is
simply Gn(ω) = 0 which gives error function e(ω) = W (ω)D(ω).
The approximation error EF min(n) = maxω∈[0,π ](W (ω)D(ω)) is
lower than Wmax but filters with zero coefficients are of course
not practical.

For practical filters we can use (44) to get a bound on the max-
imum number of consecutive zero coefficients ak . For a given nx

the number of consecutive zero coefficients ak equals nx − n − 1
and (44) states that the approximation error EF min(n) cannot go
below Wmax with increasing nx . Or in other words, the approxima-
tion error EF min(n) cannot get better once nx −n −1 is big enough.

To get an estimate when exactly this occurs note first that the
optimal polynomial Gn(ω) must approximate D(ω) in all bands.
The condition nΩ wx − 1 > n is therefore pessimistic because the
number of sign changes that e(ω) can have on ω ∈ Ωwx is typically
lower than n. Let us denote this number as zΩ wx . We wish to find
an easily computed estimate for nx that satisfies the condition

nΩ wx − 1 > zΩ wx (45)

which is sufficient for (44) to hold. Getting an estimate for zΩ wx

is not difficult. The Cauchy remainder theorem [4] tells us that the
zeros and the extremes of e(ω) of the optimal cosine polynomial
are equidistant on the interval [0,π ]. In our case the don’t care
bands are excluded from [0,π ] which affects the equidistant prop-
erty near the band edges. But the position of zeros is still almost
equidistant in the rest of the interval.

We use this property to get an estimate for zΩ wx . Let �ωtr de-
note the total width of all don’t care bands and let �ωΩ wx denote
the width of the band with the weight Wmax . An approximate for-
mula gives

zΩ wx ≈ n
�ωΩ wx

π − �ωtr
. (46)

The frequencies ω� are equidistant by definition and their number
in Ωwx is approximately

nΩ wx ≈ nx
�ωΩ wx

. (47)

π
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Combining (46) and (47) with (45) gives an estimate for nx that
we are looking for

nx ≈ n +
⌈

n
�ωtr

π − �ωtr
+ 2π

�ωΩ wx

⌉
(48)

where �x	 denotes the smallest integer greater than or equal to x.
Let us denote the maximum number of consecutive zero coeffi-
cients ak as nczer . It follows from (48) that it is equal to

nczer = nx − n − 1 ≈
⌈

n
�ωtr

π − �ωtr
+ 2π

�ωΩ wx

⌉
− 1. (49)

This simple formula was tested on a large number of filter design
cases. For filters with �ωΩ wx > 0.05π and sWmax < 100 it was
found that it gives an excellent prediction for nczer . The nczer from
(49) gave approximation error EF min(n) that was never more than
5% below the bound (44). The formula becomes inaccurate for fil-
ters with a very narrow band �ωΩ wx that also have a very high
weight Wmax . In such cases one can use the exact zΩ wx by count-
ing the number of ω� in Ωwx and a much better estimate of nΩ wx

by using the number of extremal points in Ωwx that is obtained
from the Remez algorithm when (4) is solved.

Filters with the same weight in all bands are a special case
because �ωΩ wx = π − �ωtr and (49) becomes

nczer = nx − n − 1 ≈
⌈

n�ωtr + 2π

π − �ωtr

⌉
− 1 (50)

giving lower nczer than (49). Eqs. (49) and (50) describe the in-
fluence of filter specifications on nczer . It is inversely proportional
to the width �ωΩ wx of the band with the highest weight and is
almost independent of n if the don’t care bands are narrow. In ad-
dition, nczer is almost independent of Wmax .

Although we derived nczer for real polynomial Pn(ω), it is easy
to see that it is also valid for the optimal integer Pn(ω). This is
true because the optimal integer Pn(ω) gives EF min(n) that cannot
be lower than the one for the unconstrained Pn(ω). The maximum
number of consecutive zeros nczer for integer Pn(ω) therefore can-
not be higher than the one given by (49) or (50). It will in fact
almost always be lower which means that it is safe to use it to
stop the search for true nmax .

Knowing nczer also gives an indirect insight into the maximum
integer polynomial degree nmax . Higher nczer gives an indication
that nmax will also be higher. We can expect with a reasonable
certainty that the filter specifications affect the nmax in a way that
is similar to the one described above. This can be useful because
there is no formula that directly relates nmax to filter specifications.
These conclusions are in excellent agreement with the results that
were observed in the practical optimal finite wordlength design
cases.

7. Results and conclusion

Let us now return to our starting problem which is how to
find nmax and Nmax for optimal filters with coefficients from Ib .
This problem is related to (4) and is almost certainly NP-hard. It
is computationally very demanding and we wish to find an eas-
ily computed estimate for nmax . In order to get this estimate we
derived a bound nf max using polynomials Pn(ω) with real coeffi-
cients in which only the highest order coefficient anx is from Ib .
Finding nf max is quite easy and it is worth investigating if it can
be used to compute a reasonably good estimate of nmax .

Both nf max and nmax are computed from the same filter speci-
fications. To see if they are related let us make the following two
observations:
Table 1
The six sets of filter specifications. The frequency edges are divided by 2π .

Filter Band 1 Band 2 Band 3

A
edges 0–0.2 0.25–0.5
D(ω) 1 0
W (ω) 1 1

B
edges 0–0.2 0.25–0.5
D(ω) 1 0
W (ω) 1 10

C
edges 0–0.14 0.18–0.32 0.36–0.5
D(ω) 1 0 1
W (ω) 1 1 1

D
edges 0–0.14 0.18–0.32 0.36–0.5
D(ω) 1 0 1
W (ω) 1 10 1

E
edges 0.01–0.21 0.26–0.49
D(ω) 1 0
W (ω) 1 1

F
edges 0.01–0.21 0.26–0.49
D(ω) 1 0
W (ω) 1 10

1. It follows from (24) and (35) that for real Pn(ω) the approxi-
mation error EF min(n) converges to limit L with increasing n.
Because of its higher approximation power the EF min(n) of real
Pn(ω) is lower than Emin(n) of the integer Pn(ω). Since it also
converges to L faster, we might expect that this also means
that nf max is lower than nmax . This, however, is not necessarily
so.

2. The reason for this is that the limit L is not the same for real
and integer Pn(ω). Even if no formula that gives L for inte-
ger Pn(ω) is known, it is easy to see that it is higher than
for real Pn(ω). Convergence to a higher limit obviously also
means lower nmax for the integer Pn(ω). The effects of higher
approximation power of real Pn(ω) and higher L of integer
Pn(ω) influence nf max and nmax in the same direction.

Although we have no formal proof that these effects lead to similar
nf max and nmax , it is likely that they do. The idea of predicting nmax

simply as

nmax = nf max (51)

seems promising and is worth investigating experimentally.
Thirty six filters with six different sets of frequency-domain

specifications, denoted A through F, with wordlength b = 7 to 12
were used for testing. The frequency specifications are similar to
those that were used in [15,16]. They were chosen because they
are completely unrelated to the nmax problem. The frequency spec-
ifications are given in Table 1. A is a low-pass filter with unit
weighting in both bands. B is the same, except that the stopband
has a weighting of 10. C is a bandstop filter with unit weighting in
all bands, while D has a weighting of 10 in stopband. E is a low-
pass filter whose passband and stopbands do not include ω = 0
or π . Again, F is the same, except that the stopband has a weight-
ing of 10.

We denote by A/7 the filter design problem for specification
A and b = 7 bits; similarly for A/8, A/9, A/10, A/11, A/12, B/7
and so on. All filters are type 1 (odd length, positive symmetry),
which means that the maximum filter length is equal to Nmax =
2nmax − 1. For each of the filters nf max for real Pn(ω) was com-
puted as described in Section 4 giving a predicted nmax = nf max .
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Table 2
Predicted and true maximum polynomial degree nmax for filters from Table 1. The
filter length Nmax equals 2nmax − 1.

Filter Predicted
nmax

True nmax Predicted
appr. error

True appr.
error

A/7 15 15 0.0517669 0.0517669
A/8 20 20 0.0296271 0.0296271
A/9 24 22 0.0152829 0.0152829
A/10 29 30 0.0085716 0.0083668
A/11 33 31 0.0039812 0.0039812
A/12 38 42 0.0021621 0.0020973
B/7 15 17 0.2119286 0.1906503
B/8 19 19 0.1121105 0.1121105
B/9 24 22 0.0568042 0.0568042
B/10 28 26 0.0291078 0.0291078
B/11 30 30 0.0152946 0.0152946
B/12 37 35 0.0070114 0.0070114
C/7 21 21 0.0424776 0.0424776
C/8 27 27 0.0222873 0.0222873
C/9 31 33 0.0130958 0.0117153
C/10 37 39 0.0064574 0.0052595
C/11 43 43 0.0030568 0.0030568
C/12 49 49 0.0014760 0.0014760
D/7 23 23 0.0994322 0.0994322
D/8 29 27 0.0610920 0.0610920
D/9 35 35 0.0248223 0.0248223
D/10 39 43 0.0153054 0.0143894
D/11 45 45 0.0069477 0.0069477
D/12 51 53 0.0037637 0.0037085
E/7 17 15 0.0512550 0.0512550
E/8 21 19 0.0288770 0.0288770
E/9 24 26 0.0156386 0.0152211
E/10 30 26 0.0079545 0.0079545
E/11 34 34 0.0039878 0.0039878
E/12 38 40 0.0021529 0.0019435
F/7 16 16 0.1973700 0.1973700
F/8 18 19 0.1104889 0.1029697
F/9 25 25 0.0523973 0.0523973
F/10 29 31 0.0286058 0.0272422
F/11 33 31 0.0138546 0.0138546
F/12 38 36 0.0072031 0.0072031

The program for the optimal finite wordlength filter design [16]
was used to find the true nmax for integer Pn(ω) for each of the
filters. This is a computationally slow procedure which requires
trying different filter lengths n until a solution with nczer consec-
utive zeros is found. For example, to find true nmax for filter D/12
requires a solution of length n = 59 (N = 117) which took 2.6 h
(on a 3.4 GHz Intel Core i7 3770). Increasing the number of bits b
to 13 or more makes the computation of true nmax very difficult.
Computing the predicted nmax , however, is easy for any b.

Table 2 shows a summary of the results, comparing the pre-
dicted nmax and true nmax together with the corresponding ap-
proximation errors. A constant scaling factor s = 2b−2 was used in
all design cases. This scaling was chosen for simplicity and also
to allow easier comparison with the older results. As described
by (7) it gives H(ω) that is multiplied by 2b−1. An obvious alterna-
tive would be to use the optimal scaling factor. Unfortunately, this
requires much longer computation times and makes the computa-
tions that are needed in Table 2 impractical. Although the scaling
factor s affects the resulting approximation error, it does that in
approximately the same direction for computation of both pre-
dicted and true nmax . This means that the relationship between
the predicted and true nmax stays more or less the same for all
reasonable s.

Results show that the predicted nmax is close to the true nmax .
This is quite remarkable when we consider how much easier it is
to compute the predicted nmax . In 14 of the 36 cases the predicted
nmax equals true nmax . The largest difference is 4 (A/12, D/10, E/10)
which in the case of E/10 gives a 15% mismatch. The difference is
smaller for all other filters with an average mismatch of less than
5%. Filter E/10 is the worst and is also quite unusual in another
respect. The true nmax for both E/9 and E/10 is 26 which is con-
trary to the expected increase of nmax when the number of bits b
increases from 9 to 10. E/10 is the only such case, the other 35
cases behave as expected. Results also show that nmax is almost
independent of weight which is in agreement with the predictions
that follow from (49) or (50).

It is interesting to observe the filter performance when the
predicted nmax is smaller than the true nmax . For filter E/12
the approximation error of predicted nmax = 38 equals 0.0021529
whereas the approximation error of true nmax = 40 is 0.0019435.
The difference is 10.8% which corresponds to a stopband difference
of 1.3 dB. Similarly, for C/10 (predicted nmax = 31, true nmax = 33)
the numbers are 0.0064574 and 0.0052595 or 22.7% which corre-
sponds to a stopband difference of 1.5 dB. These are the largest
differences and are much smaller for all other filters. The perfor-
mance of predicted nmax filter is close to performance of true nmax

filter even in the worst examples.
The easily computed predicted maximum degree nmax is useful

in the practical finite wordlength FIR design. Let us assume that we
would like to find the b-bit filter with the lowest approximation
error for a given set of specifications. Without the predicted nmax

we must compute a large number of optimal finite wordlength so-
lutions which is a very time consuming procedure. Using predicted
nmax gives a much faster answer which is almost always equal or
close to the correct answer. We conclude that this result is useful
in the practical finite wordlength FIR filter design.
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