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Abstract

This paper considers the windowing problem of the short-time frequency analysis that is used in speech recognition systems (SRS).
Since human hearing is relatively insensitive to short-time phase distortion of the speech signal there is no apparent reason for the use of
symmetric windows which give a linear phase response. Furthermore, phase information is usually completely disregarded in SRS. This
should be contrasted with the well-known fact that relaxation of the linearity constraint on window phase results in a better magnitude
response and shorter time delay. These observations form a strong argument in favor of the research presented in this paper. First, a
general overview of the role that windows play in the frequency analysis stage of SRS is presented. Important properties for speech rec-
ognition are highlighted and potential advantages of asymmetric windows are presented. Among them the shorter time delay and the
better magnitude response are most important. Two possible design methods for asymmetric windows are discussed. Since little is known
about window influence on SRS performance the design methods are first considered from a frequency analysis point of view. This is
followed by practical evaluations on real SRS. Expectations were confirmed by the results. The proposed asymmetric windows increased
the robustness of elementary, isolated and connected speech recognition on a variety of adverse test conditions. This is particularly true
for the case of a combination of additive and low pass convolutional distortions. Further research on asymmetric windows and on the
parameterization process as a whole is suggested.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The fundamental problem of automatic speech recogni-
tion (ASR) is the variability of speech signals. Each written
word has several possible spoken variants. In addition, the
speech signal is often distorted which results in a reduced
success rate of speech recognition systems (SRS). Unde-
sired influence of distortions is addressed in different ways.
The common procedure is inclusion of expected conditions
in a training phase. In practice this is difficult to do because
of the diversity of audio devices, channels and acoustical
environments present in real spoken communications. It
is therefore inevitable for SRS to meet unforeseen condi-
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tions. In such situations it is very important that they main-
tain their success rate as much as possible.

Symmetric windows are widely used in the field of digital
signal processing due to their ease of design and linear
phase property. But the latter also implies potential draw-
backs like longer time delay and frequency response limita-
tions. Removal of the symmetry constraint can therefore
give asymmetric windows having some better properties.
In speech recognition this can lead to a more robust signal
representation and hence better recognition performance.
A shorter time delay on signal processing can also be
achieved. This property is gaining importance in contem-
porary spoken communications – particularly in Voice
Over Internet Protocol (VOIP) related applications.

Human listeners perform substantially better than SRS
in the presence of distortions. This suggests that properties
of human hearing should be taken into consideration when
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Fig. 1. Typical parameterization process in a speech recognition system.
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SRS are designed. Although it can be argued that a ‘‘blind’’
replication of human properties cannot consistently
enhance automatic recognition performance (Hermansky,
1997), some of them may be worth trying. For example,
human speech perception is quite insensitive to short-time
phase distortions of the speech signal. This may be attrib-
uted to the fact that the ear hair cells have an asymmetric
impulse response and this fact is disregarded when symme-
tric windows are used. The same conclusion can also be
reached from the purely signal processing point of view.
We believe that the use of asymmetric windows could help
in bridging the gap between human and ASR performance.
Since the window function can be easily substituted in a
SRS without any additional space or time complexity, the
positive influence of such an act on recognition perfor-
mance is of great interest.

It is perhaps surprising that so little attention has been
given in the literature to the problem of asymmetric win-
dow design. Even more, little is known about the influence
of window properties on the performance of SRS in gen-
eral. However, the popularity of asymmetric windows in
speech coding (ITU, 1996) suggests that their advantages
could be applied to practical systems. Our initial research
on the application of non-standard windows to speech rec-
ognition (Rozman and Kodek, 2003) confirmed a notice-
able increase in overall recognition robustness. These
facts contributed to motivation for further research with
purpose of enhancing the knowledge about window influ-
ence on the performance of SRS.

The paper is organized as follows. Section 2 gives an
overview of important human audio perception aspects in
relation to windowing in a typical frequency analysis pro-
cedure used in SRS. Potential advantages of asymmetric
windows for speech recognition are stressed. Also, different
criteria and desired properties that could enhance SRS
robustness are discussed. Several methods with practical
design examples are presented. In Section 3, practical eval-
uations are described. A reference testing environment with
two real speech recognition systems, two speech databases,
and a variety of simulated distortions is introduced.
Results of practical recognition tasks are shown in several
tables, focusing on speech recognition’s performance in
adverse conditions not present in the training phase; we
denote this property as ‘‘inherent robustness’’. In Section
4 important conclusions are drawn and directions for fur-
ther research are given.
2. Windows in speech recognition

The short time Fourier Transform (STFT) is a common
frequency analysis method in speech recognition. The sig-
nal is divided into short frames of N samples as shown in
Fig. 1. Final windowed values x(n) in each frame are
obtained by multiplying signal s(n) with a nonzero window
sequence w(n)

xðnÞ ¼ sðnÞwðnÞ; n ¼ 0; . . . ;N � 1: ð1Þ
The frame length N must be short because of the rapidly
changing spectrum of s(n). A longer N gives better spectral
resolution but worse temporal resolution and vice versa.
The windowed spectrum X(ejx) is calculated as the fre-
quency response of x(n). X(ejx) is also equal to the con-
volution integral of the Fourier Transform (FT) of the
window sequence W(ejx) and the FT of the original signal
S(ejx)

X ejxð Þ ¼ 1

2p

Z p

�p
S ejh
� �

W ejðx�hÞ� �
dh: ð2Þ

The frequency response X(ejx) is obviously influenced by
W(ejx). In addition, it is typical for speech recognition that
only the magnitude frequency response of signal samples in
the frame is kept for further processing. We therefore wish
to select a window function w(n) in such a way that the com-
puted magnitude response jX(ejx)j is as ‘‘near as possible’’
to the real magnitude response jS(ejx)j. For a given N the
asymmetric window idea arises naturally here: removing
the symmetry constraint can increase the spectral resolution
giving a better jX(ejx)j. This, however, does not necessarily
translate into better speech recognition performance.

Window functions that satisfy some signal processing
optimality criteria are well known in the literature. But
when we design the window sequences for speech recogni-
tion other aspects are also important. There is no theoret-
ical reason to believe that the best window sequences,
which satisfy the signal processing optimality criteria, will
also perform optimally in speech recognition. What is
needed here is a careful study of the properties of human
auditory perception and, based on this study, incorpora-
tion of selected window properties into SRS. We tried this



Fig. 2. Comparison of window influence on the computed magnitude response of a simple two tone signal using: (a) Hamming window, (b) Solvopt3_10 –
asymmetric window with lower side-lobes.
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approach in our implementations of SRS and several inter-
esting ideas appeared.

One of them is the idea of windows with wider main-
lobes in magnitude response. Wideband time-frequency
signal representation is usually used in speech recognition
as a basis for further computation of FBANK1 and ceps-
tral (MFCC2) feature vectors as shown in Fig. 1. In this
typical case it is obvious that accurate frequency analysis
or use of windows with narrow main-lobes is not needed,
at least not for higher frequencies. A similar conclusion
can be drawn from knowledge of human speech perception
(Fletcher, 1953). The main advantage of a wider main-lobe
is that it can lead to lower side-lobes.
2.1. Finding optimal window for speech recognition

As mentioned above, it is not clear what window prop-
erties and design criteria are optimal for use in speech rec-
ognition. It is nevertheless possible to make the following
fundamental assumptions about the window magnitude
response for use in speech recognition:

– Human speech perception is almost insensitive to short-
time phase distortions in the speech signal. The ear
performs frequency analysis with lower frequency
resolution and heavily overlapped filters with rapidly
decaying side-lobes.

– Speech recognition systems usually discard the phase
information and perform wideband frequency analysis
in the parameterization process. This means that the lin-
earity of phase constraint can be removed without any
adverse effects.

Basically there are two major signal representation dis-
tortions introduced by the inevitable windowing process:
1 FBANK features represent logarithm of energy in each frequency
band.

2 Stands for Mel Frequency Cepstral Coefficients. Computed as DCT
transform of FBANK features.
spectral smearing and leakage. Both can be seen in Fig. 2
where a signal consisting of two unequal pure tones is
shown. Spectral smearing is important for the discrimina-
tion of closely spaced spectral components, while spectral
leakage influences the detection of the distant components.
It is clearly shown in Fig. 2a that in the case of a window
with high side-lobes (Hamming) the first tone will not be
sufficiently suppressed and will add to the much smaller
second tone. This gives an incorrect spectral estimate of
the second tone. Things are different if a window with
lower side-lobes3 (Fig. 2b) is used. The first tone will be
suppressed almost completely and will not influence the
estimate of the second tone. Since both smearing and leak-
age cannot be minimized at the same time their importance
should be established. Based on our experiments it seems
that the distant spectral leakage, or more general side-lobe
height, is important for speech robustness; hence it will be
given more attention.

From the speech recognition point of view the distant
spectral leakage is important because of another practical
reason. Most real SRSs that are based on Hidden Markov
Models (HMM) approach use diagonal covariance matri-
ces as a computational simplification of the time consum-
ing processing of full covariance matrices. The error
introduced with this simplification is smaller if components
of feature vectors are uncorrelated. In this context it is
interesting to observe that the lowering the spectral leakage
helps decorrelate FBANK features. As shown in Fig. 3 on
the example of 50 randomly selected speakers from the
SLO-DIGITS database (Section 3.1.2), asymmetric win-
dow with low side-lobes3 decreases the average correlation
in feature vectors.4 Therefore HMM SRSs using FBANK
features and diagonal covariance matrices are expected to
perform better with asymmetric windows.
3 ‘‘Solvopt3_10’’ – introduced in next section.
4 Main diagonals in the matrix of correlation coefficients were averaged.

Row ‘1’ stands for main diagonal with elements (i, i), ‘2’ stands for second
diagonal with elements (i + 1, i), etc.



Fig. 3. Window influence on the average correlation of FBANK features in: (a) clean conditions and (b) added white noise at 6 dB.
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Asymmetric windows also bring shorter time delay,
which at first does not seem to be of major importance.
In general, the speech recognition process is time consum-
ing and the time delay of spectral analysis represents only a
small fraction. But recently unified distributed platforms
for speech communication, recognition, and synthesis have
appeared (Milner and Shao, 2006). They merge speech cod-
ing, recognition, and synthesis systems and introduce a
major novelty – a uniform signal representation. Therefore
a fast reconstruction of the time-domain signal is required
for ‘‘live’’ spoken communication. The shorter time delay
property alone is already successfully used in speech coding
in the form of well known asymmetric ‘‘ITU Hamming–
Cosine window’’ (ITU, 1996). An example of the time
delay effect in frequency analysis can be seen in Fig. 4. A
sliding STFT was computed to better show the time differ-
ence in both spectrograms. It is clearly shown that asym-
Fig. 4. Time delay effect in the spectrogram of the 3 tone sound using: (a)
Hamming window and (b) ITU Hamming–Cosine window.
metric windows give shorter time delay in spectral
analysis and therefore faster signal reconstruction.

These observations lead to a reasonable doubt that lin-
ear phase windows are optimal for speech recognition.
The following properties are expected to be more impor-
tant for speech recognition performance:

– lower side-lobes,
– monotone, rapidly decaying height of side-lobes,
– shorter time delay (less important for recognition alone).

For a given window function the lower side-lobes can
only be obtained by widening the main-lobe which, based
on the reasons presented, seems a small price to pay. Lower
side-lobes that are also rapidly decaying are important
because of the spectral leakage distortion. They prevent
distant spectral components from affecting the output of
a given band. The majority of additive noises in practice
are band limited and hence preventing the spreading of
noise energy into other spectral bands is important for
robustness of recognition. As already stated, shorter time
delay is of lesser importance for speech recognition alone.
2.2. Window design methods

Most SRS implementations use one of the standard
symmetric windows (Hamming, Hann, Blackman). It is a
known fact from the field of FIR filter design that symme-
try constraint relaxation can lead to better magnitude
response. For the initial research in this field we have
designed and evaluated asymmetric windows with lower
side-lobes but without the rapidly decaying height of
side-lobes property. It is important to remember that the
inherent robustness of SRS will represent the final crite-
rion. Two groups of windows are described in following
subsections.
2.2.1. Standard symmetric windows
Using one of the standard windows gives a fixed rela-

tionship between different main-lobe widths and side-lobes



Fig. 5. Windows designed with FIR methods (N = 256).

Fig. 6. Magnitude responses of windows designed with FIR methods
(Fs = 8000 Hz, N = 256).
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heights. Windows in this group are usually defined with a
closed form expression and are therefore easily comput-
able. They are also symmetrical (linear phase) and have a
particular shape of the magnitude response. But their mag-
nitude responses are generally not in a full conformance
with those of ‘‘speech recognition friendly’’ windows (Sec-
tion 2.1). Also, symmetric windows imply constant, but
generally longer time delay. In this group the Hamming
window is most popular and will be used in further
comparisons.

2.2.2. Asymmetric windows designed with FIR filter methods

All window functions are of finite length N which makes
it possible to treat them as if they are the impulse response
h(n) of a FIR digital filter. Given the definition of the
desired magnitude response a window function can be
computed using methods similar to those used for the
design of optimal linear phase FIR digital filters. The dif-
ference is that the symmetry constraint is removed which
leads to an optimization problem that is significantly more
difficult. Two types of asymmetric window design problems
were investigated. The first one is denoted ‘‘nearly linear
phase’’ window and is defined as:

Find the optimal impulse response of length N,
h* = [h*(0),h*(1), . . .,h*(N � 1)], that has the minimal error
according to the minimax (or Chebyshev) criterion

dðh�Þ ¼ min
h

dðhÞ; ð3Þ

dðhÞ ¼ max
x2X

W ðejxÞjEðejxÞj; ð4Þ

HðejxÞ ¼
XN�1

n¼0

hðnÞe�jxn; ð5Þ

EðejxÞ ¼ DðejxÞ � HðejxÞ; ð6Þ

where d(h) is the Chebyshev error of sequence h, D(ejx) is
the desired and H(ejx) the real frequency response.
W(ejx) is a positive weighting function and X is a set of dis-
crete frequencies,5 on which the error function E(ejx) is
evaluated. Its absolute value can be computed as

jEðejxÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRefEðejxÞgÞ2 þ ðImfEðejxÞgÞ2

q
: ð7Þ

The minimax approximation problem described by Eqs.
(3)–(7) is nonlinear and therefore considerably more diffi-
cult to solve than the one with the linear phase constraints
on D(ejx) and H(ejx) (Parks and McClellan, 1972). In Eq.
(6) the phase and magnitude errors contribute equally to
the final error value. This leads to a window that is typi-
cally not too different from the symmetric linear phase
window.

The second type of asymmetric window is denoted
‘‘arbitrary phase’’ window. The complex error function
Eq. (6) is replaced by the magnitude-only error function

EðejxÞ ¼ jDðejxÞj � jHðejxÞj ð8Þ
5 X is a union of compact, non overlapping subintervals of [0, . . .,p].
in which the phase error is completely ignored. Examples
of the corresponding solutions for linear phase, nearly lin-
ear phase, and arbitrary phase windows are given in Figs.
5–7. These windows were designed using D(ejx) = 1,
W(ejx) = 1 for x 2 [0, 0.012p] and D(ejx) = 0, W(ejx) =
1000 for x 2 [0.0425p,p]. The examples show how the
relaxation of phase linearity constraints leads to a better
magnitude response – in the form of lower side-lobes in this
case. Note that these windows are equiripple and do not
have the rapidly decaying height of side-lobes property.
Fig. 7. Group delay in main-lobe of windows designed with FIR methods
(Fs = 8000 Hz, N = 256).
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The modified linear programming method based on the
work of Burnside and Parks (1995) was used to solve the
nearly linear phase problem given by Eqs. (3)–(7). This type
of window was not used in speech recognition experiments
described in this paper. The arbitrary phase problem (Eq.
(8) replacing Eq. (6)) was solved using the general-purpose
optimization procedure ‘‘SOLVOPT’’.6 Due to the diver-
sity of possible design cases the use of general optimization
methods was most appropriate. It provided a framework
for efficient manipulation of different criteria and desired
properties.

A drawback of the asymmetric window design is the
complexity of the design process that requires a solution
of a significantly more difficult minimax approximation
problem. This, however, does not increase the complexity
of an SRS because the window can be precomputed. It is
also difficult to find the optimal design specifications
(desired passband and stopband for instance). Since the
difference in the side-lobe heights of symmetric and asym-
metric windows increases with the main-lobe width, we
used the above described D(ejx) that gives a main-lobe that
is approximately three times wider than the one of the cor-
responding Hamming window. Certainly, some additional
research in this field is needed, particularly in finding more
efficient design methods and optimal design specifications.
7

3. Practical evaluation

The main motivation for the work presented in this
paper is to evaluate the contribution of windows with cer-
tain time-frequency properties to speech recognition
performance and to its inherent robustness. In this section
the windows are analyzed by a practical evaluation in a
reference testing environment. This will give empirical
evidence of window influence on the performance and on
the inherent robustness of SRS, but should be treated with
caution. Enhancing the speech signal representation by
itself does not help much if further stages in the recognition
process (classification stage in this case) are not able to
utilize the advantage. This means that the practical evalua-
tions can provide only partial answers. Also, the generality
of conclusions is arguable because they depend on specific
parameters used in a practical evaluation. However, it
seems that this is currently the only possibility and that
more definite answers are a matter of further research
and evolution in this field.

Two groups of equiripple windows were used in our
experiments. The symmetric linear phase Remez3 windows
were designed using the Parks–McClellan method. The
asymmetric arbitrary phase Solvopt3 windows were
designed as described above. The stopband weighting func-
tion W(ejx) was set to 10, 100, and 1000 giving the six
windows Remez3_10, Remez3_100, Remez3_1000,
Solvopt3_10, Solvopt3_100, and Solvopt3_1000. Note that
6 URL: http://www.kfunigraz.ac.at/imawww/kuntsevich/solvopt/.
Figs. 5–7 show as examples Remez3_1000 (linear phase)
and Solvopt3_1000 (arbitrary phase) windows. The reason
for including the symmetric Remez3 windows is to demon-
strate that lower side-lobes can improve robustness also for
symmetric windows when compared to the standard Ham-
ming window.

3.1. Reference testing environment

The reference testing environment consists of two speech
recognition systems, based on different approaches, and of
two speech databases. Both isolated and connected digit
recognition were used and a variety of common additive
and convolutional distortions were simulated to evaluate
the inherent robustness of SRS.

3.1.1. Speech recognition systems

The practical evaluations were performed on two real
SRS based on different approaches and recognition task
complexities:

– isolated word recognizer based on Hidden Markov
Models – ‘‘HTK’’,

– connected digit recognizer based on Neural Networks
(NN) – ‘‘CSLU’’.

The first one is based on the statistical approach (Rabi-
ner, 1989). It recognizes one word at a time. Whole-word
continuous models are used with 8 internal states, mixtures
of eight Gaussian densities and diagonal covariance matri-
ces. It is implemented using the HTK software package.7

This approach is currently the most frequently used type
of speech recognizer.

The second system uses a neural network in the form of
a multi-layer perceptron with 200 internal neurons. It is
capable of recognizing whole utterances of concatenated
words. Context dependent speech units are used. A simpli-
fied form of Viterbi search procedure is used on the results
from the perceptron classification stage. The advantage of
this approach is lower time and space complexity. It is
implemented in the CSLU Speech Toolkit.8

The architectures for both systems were left unchanged
(as much as reasonably possible). Utterances were con-
verted into sequences of feature vectors consisting of the
‘‘standard’’ set of normalized9 MFCC and corresponding
delta features. In the HTK recognizer, 12 MFCC features
together with the logarithm of the frame energy and the
corresponding 13 delta features were used giving a total
of 26 features. The CSLU recognizer uses only MFCC
features without delta features, although the vector at time
t is actually a concatenation of 5 vectors at t � 60 ms,
t � 30 ms, t, t + 30 ms, t + 60 ms. This sums up to a final
13 · 5 = 65 features.
URL: http://htk.eng.cam.ac.uk/.
8 URL: http://cslu.cse.ogi.edu/toolkit/.
9 Cepstral mean subtraction was performed.
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A sampling frequency of 8000 Hz was used in both sys-
tems. The window of length 32 ms was shifted in steps of
10 ms across the speech signal. In all cases Word Error
Rate (WER) was measured.
3.1.2. Speech databases

All experiments were carried out on two different speech
databases: one in English and one in Slovenian.

SLO-DIGITS10 database (Rozman and Kodek, 2000)
was used in both SRS. It consists of 780 Slovenian adult
speaker utterances recorded over public telephone lines
with their inherent noise. Simple 13-word vocabulary (dig-
its from ‘‘0’’ to ‘‘9’’ and words ‘‘yes’’, ‘‘no’’ and ‘‘stop’’)
was used. Each utterance consisted of all 13 words in ran-
dom order. Speakers were selected on the basis of parame-
ters like age, gender, and location. In practical evaluations
234 speakers were used for training the recognizers. The
test and validation sets consist of 156 speakers each. The
same sets were used in both SRS. Main characteristics of
this database are lower quality of recordings and a variety
of different dialects. An isolated digit version and a con-
nected digit version of SLO-DIGITS were created and used
in the experiments.

To enhance the variability of evaluation conditions the
English ‘‘Numbers 95’’ database11 was also used with the
CSLU recognizer. It consists of connected numbers utter-
ances recorded over telephone lines. For our task only
utterances with digit strings were used (having an average
of 5–6 digits per utterance). There were 1368 speakers in
the training set, 555 speakers in the validation set and
1168 speakers in the test set.
3.1.3. Inherent robustness evaluation
It should be stressed that both recognizers were trained

on the ‘‘clean’’ training set that did not contain any added
noise. The different window functions were tried and the
inherent robustness was evaluated in terms of a system’s
performance on noisier, simulated conditions that were
not present in the training phase. No additional adaptation
was performed prior to testing.

The following seven additive noise recordings derived
from the NOISEX database (Varga et al., 1992) were used:

– speech in background (‘‘Babble’’),
– noise in pilot cockpit of F-16 (‘‘F-16’’),
– factory noise (‘‘Factory1’’),
– car noise (‘‘Volvo’’),
– pink noise (‘‘Pink’’),
– white noise (‘‘White’’),
– filtered white noise centered around 900 Hz (‘‘Pass 900’’).

Additive noises were also combined with a convolu-
tional distortion. Lowpass filtering that simulates an acous-
10 In Slovenian this database is named ‘‘ŠTEVKE’’.
11 URL: http://cslu.cse.ogi.edu/corpora/numbers/index.html.
tic obstacle12 between speaker and microphone that is
common in hands free speech was used.

Testing was performed on the following three major test
groups:

– ‘‘Clean’’ test group is the original test set.
– ‘‘Additive’’ test group consists of 7 test sets that were

obtained by adding the 7 noise recordings to ‘‘Clean’’
test set for a specific signal to noise ratio (SNR). Three
different SNR values were used giving a total of 21 test
sets.

– ‘‘Additive+LP’’ convolutional test group was formed by
additional lowpass filtering of all ‘‘Additive’’ test sets.

Tables 1 and 2 give the recognition rates for the CSLU
recognizer. A slight degradation in ‘‘Clean’’ conditions is
quite usual for robustness enhancement techniques. On
the other hand, performance increases can be observed in
the additive noise groups for asymmetric windows and an
even greater improvement in the case of additional lowpass
distortion. Similar conclusions can be drawn from the
results with the HTK recognizer in Table 3. The only differ-
ence is a slight degradation in additive noise test groups. To
see if this was caused by the HTK recognizer in combina-
tion with the SLO-DIGITS database an additional set of
tests using RASTA filtered MFCC + delta features (Her-
mansky and Morgan, 1994) was done. Performance is con-
sistently better (Table 4) which means that the observed
degradation is not related to HTK or SLO-DIGITS. It
can also be concluded that some feature sets (in our case
RASTA features) better utilize different signal representa-
tions than others.

If we take a closer look at the performance on individual
additive noise distortions in Table 5, we can see that a
significant degradation occurs in the case of ‘‘artificial’’
additive band limited white noise (‘‘Pass 900’’). It seems
that in this case the main-lobe width plays a more impor-
tant role than initially expected. Since the noise is limited
around 900 Hz, a wider main lobe causes its spectral smear-
ing into near spectral bands that are important for recogni-
tion. This is further confirmed by the fact that the same
effect does not happen in two similar wideband distortions:
White and Pink noise.

Generally speaking, the robustness improvements on
additive and lowpass distortions are well beyond our initial
expectations. They confirm our initial assumption that the
leakage reduction reduces the effect of noise without
adversely affecting the clean recognition.

Another conclusion follows from the results. For both
Remez3 and Solvopt3 windows the lower side-lobes almost
consistently result in better robustness. This confirms that
the height of side-lobes is indeed a very important
property.
12 Fourth order lowpass digital Butterworth filter was used with
fc = 800 Hz.

http://cslu.cse.ogi.edu/corpora/numbers/index.html


Table 1
WER on connected digit task

WER (%) Clean Additive (SNR) Additive + LP (SNR) Mean

12 dB 6 dB 0 dB 12 dB 6 dB 0 dB

Hamming 2.6 16.6 31.2 56.6 35.9 52.2 73.0 38.3
Remez3_10 3.1 16.3 31.4 58.3 26.6 40.9 64.8 34.5
Solvopt3_10 3.0 14.3 30.2 58.1 26.2 40.6 64.2 33.8
Solvopt3_100 2.9 13.2 28.9 58.2 25.7 40.0 65.0 33.4
Solvopt3_1000 2.9 13.3 28.9 55.9 25.5 39.5 62.1 32.6

CSLU SRS on Numbers 95 database was used.

Table 2
WER on connected digit task

WER (%) Clean Additive (SNR) Additive + LP (SNR) Mean

12 dB 6 dB 0 dB 12 dB 6 dB 0 dB

Hamming 5.9 13.7 26.7 46.7 45.7 58.0 69.4 38.0
Remez3_100 5.7 13.8 26.6 47.7 21.6 32.8 52.2 28.6
Solvopt3_100 5.0 12.3 24.2 44.6 20.9 31.3 49.8 26.9

CSLU SRS on SLO-DIGITS (connected) database was used.

Table 3
WER on isolated digit task

WER (%) Clean Additive (SNR) Additive + LP (SNR) Mean

12 dB 6 dB 0 dB 12 dB 6 dB 0 dB

Hamming 4.5 12.9 22.0 37.3 38.2 48.7 61.5 32.2
Remez3_100 5.4 15.4 24.8 39.1 22.8 31.4 44.3 26.2
Solvopt3_100 5.1 14.9 24.2 39.5 23.0 30.8 43.3 25.8

HTK SRS on SLO-DIGITS (isolated) database was used.

Table 4
WER on isolated digit task

WER (%) Clean Additive (SNR) Additive + LP (SNR) Mean

12 dB 6 dB 0 dB 12 dB 6 dB 0 dB

Hamming 4.3 13.8 24.6 44.1 34.3 46.4 64.1 33.1
Remez3_100 4.6 12.9 23.2 42.3 21.6 30.8 50.3 26.5
Solvopt3_100 4.2 12.6 22.5 40.6 21.1 29.9 47.6 25.5

HTK SRS with RASTA + delta features on SLO-DIGITS (isolated) database was used.

Table 5
WER on connected digit task and different noise types (SNR = 12 dB)

WER (%) White Pink Babble Volvo Factory 1 F-16 Pass 900 Mean

Hamming 11.3 12.3 13.6 13.5 14.0 10.3 20.6 13.7
Remez3_100 10.5 11.1 13.9 13.8 14.1 10.8 22.2 13.8
Solvopt3_100 9.6 9.5 12.0 12.6 11.6 9.7 21.2 12.3

CSLU SRS on SLO-DIGITS (connected) database was used.
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It is also interesting to point out that the Hamming win-
dow has a narrower main-lobe in comparison to other win-
dows. There are conditions where this seems to be
important (Tables 3 and 5) despite the great difference in
side-lobes height.
4. Conclusion

Our results show that a considerable increase of the
inherent robustness can be obtained with the non-standard
window functions. It should be stressed that replacing a



276 R. Rozman, D.M. Kodek / Speech Communication 49 (2007) 268–276
window function is a simple procedure that does not
increase the time or space complexity of a recognizer. We
are currently performing tests in which the window is chan-
ged after the learning process. Results (as yet unpublished)
show improvements that are comparable to those described
above. This fact is in our opinion very important because it
shows that an improved robustness can be obtained by sim-
ply applying a different window to an existing working SRS
without any additional training. Not a small achievement
for such a simple modification.

It is also reasonable to believe that in the future the
speech recognizers will use better signal representation even
more efficiently. Since VOIP systems are emerging fast the
shorter time delay advantage will also gain in importance.
References

Burnside, D., Parks, T.W., 1995. Optimal design of FIR filters with the
complex Chebyshev error criteria. IEEE Trans. Signal Process. 3 (43),
605–616.

Fletcher, H., 1953. Speech and Hearing in Communication. Krieger, New
York.
Hermansky, H., 1997. Should Recognizers Have Ears? In: Proc. ESCA
Tutorial and Research Workshop on Robust Speech Recognition for
Unknown Communication Channels, France. pp. 1–10.

Hermansky, H., Morgan, N., 1994. RASTA processing of speech. IEEE
Trans. Speech Audio Process. 4 (2), 578–589.

ITU – International Telecommunications Union, 1996. Coding of Speech
at 8 kbit/s Using Conjugate-Structure Algebraic-Code-Excited Linear-
Prediction (CS-ACELP). ITU-T Recommendation G.729.

Milner, B., Shao, X., 2006. Clean speech reconstruction from MFCC
vectors and fundamental frequency using an integrated front-end.
Speech Commun. 6 (48), 697–715.

Parks, T.W., McClellan, J.H., 1972. A program for the design of linear
phase finite impulse response digital filters. IEEE Trans. Audio
Electroacoust. 3 (20), 195–199.

Rabiner, L.R., 1989. A tutorial on hidden Markov models and selected
applications in speech recognition. Proc. IEEE 2 (77), 257–286.

Rozman, R., Kodek, D.M., 2000. Speech data base ŠTEVKE and
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