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LLL Algorithm and the Optimal Finite
Wordlength FIR Design

Dusan M. Kodek

Abstract—In practical finite-impulse-response (FIR) digital filter appli-
cations, it is often necessary to represent the filter coefficients with a fi-
nite number of bits. The finite wordlength restriction increases the filter
deviation. This increase can be reduced substantially if the optimal finite
wordlength coefficients are used. The time needed to compute these coef-
ficients is greatly reduced with the help of a lower bound on the deviation
increase. Derivation of an improved lower bound that uses the well-known
LLL algorithm is presented in this correspondence.

Index Terms—Finite wordlength, FIR digital filters, LLL algorithm, min-
imax approximation.

1. INTRODUCTION

In many practical applications, it is not possible to use the optimal
FIR digital filter coefficients that were computed by some “infinite
precision” method and are typically 32-bit floating-point numbers. If
we wish to use a fixed-point DSP processor, which is almost always
cheaper and/or faster than a floating-point one, we would like the filter
coefficients represented with the number of bits b that is as small as
possible. Rounding of the infinite precision coefficients to their nearest
b-bit representations gives a suboptimal filter that can be much worse
than the optimal filter. More than a 30-dB difference was observed
in some cases. Papers on the practical aspects of finite wordlength fi-
nite-impulse-response (FIR) filter design typically use one of the two
types of coefficient constraints: signed b-bit integers [1]-[8] or sums
of a limited number of signed power-of-two terms [9]-[11]. The in-
teger coefficients can be used, for example, on a fixed-point digital
signal processing (DSP) processor or a field-programmable gate array
(FPGA), whereas the sums of power-of-two allow a multiplierless im-
plementation.

Optimal coefficients require a computationally demanding solution
of the discrete variable approximation problem. The computing time
was often too long for practical use but this is quite different now.
Faster computers are only part of the reason for the increased speed.
Just as important are the theoretical results that were derived for the
finite wordlength minimax approximation problem [4]-[7], [12]. The
lower bound for the increase of minimax approximation error that is
caused by the finite wordlength restriction reduces the number of sub-
problems which must be solved to get the optimal solution. An early
version of the bound was given in [12] and later improved in [13]-[16].
This correspondence presents an improvement of the bound in [16] that
is obtained with the help of the well-known LLL algorithm.

II. THE FINITE WORDLENGTH DESIGN PROBLEM

Let us start with the infinite precision design problem. For reasons of
simplicity, we limit our attention to filters with real-valued coefficients
although the ideas presented can also be applied to complex-valued
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coefficients [17]. The frequency response H* (w) of a length N optimal
infinite precision (i.e., filter coefficients can be any real number) linear
phase FIR digital filter is equal to

N—-1
™ N

H*(w) = Z B*(k)e 7<% = (L5~ Q_IW)Q(UJ)P*(LU) (1)
k=0

where L = 0 or 1 and
P (w)= Za: cos kw. 2)

k=0

Depending on N and filter symmetry, there are exactly four types of
FIR filters and four real functions Q(w). The degree n of the cosine
polynomial is related to the filter length /N and there are formulas that
relate the optimal coefficients ™ (k) and a. Function Q(w) is irrele-
vant from the point of view of the approximation problem, and we will
therefore use Q(w) = 1. To find P*(w), one must solve the following
minimax approximation problem:

}%lwrﬁ Juax, |[W(w)(D(w) — P(w))]. 3)

The real function D(w) is the desired frequency response, the
weighting function W (w) is by definition real and positive, and the
interval [a, b] is a subset of the interval [0, 7]. The standard approach
to solving (3) is to use the Remez algorithm in a way that was first
described by Parks and McClellan [18].

The problem’s complexity increases dramatically when the fi-
nite wordlength constraint is introduced. The optimal solution is
no longer unique and the approximation error does not go towards
zero when n — oo. In this correspondence we will, without loss
of generality, make the finite wordlength constraint equal to re-
questing that the filter coefficients i (k) are b-bit integers from the set
I, = {-2*7',...,-1,0,1,...,2"7"}. Constraining (k) to the set
I, requires a redefinition or scaling of the original infinite precision
approximation problem. This is necessary to bring the coefficients
h(k) within the range of numbers in I; and can be done with the
help of a scaling factor s. Let us assume that s is known and denote
as D, (w), W, (w), and P,(w) the original (unscaled) problem. The
approximation problem that gives the optimal b-bit approximation
error E..:;» can be written as

. [ Walw) ;
Emzn - Fl’il(lil) a,Iél:;i%h s (éDu(w) é-Pu (UJ))
= min max, [W(w)(D(w) = P(w))] O]

where the finite wordlength polynomial P(w) equals

n

P(w) = sP,(w) = Z(lk cos kw. 5)
k=0
Functions D(w) = sD,(w) and W(w) = W, (w)/s are the scaled
input functions D, (w) and W, (w). Since all 2(k) must be in I, we
must have ar, € I fork = 1,2,...,n and ag € I/2, where I, /2
denotes the set I; in which all elements are divided by 2. This follows
directly from type 1 FIR filters equations

h(n) = 2ag,
h(n—k) = ag,

n=(N-1)/2
k=1,2,...,n. 6)
Note that @ is a special case. The scaling factor s can be interpreted as

the filter gain. The choice of s is not trivial and is described in [15] and
[16]. In this correspondence, we assume that s is a known constant.
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III. LOWER BOUND BASICS OF MINIMAX APPROXIMATION

The new LLL based lower bound is derived from the one in [16]
an its basics are given here. Properties of the optimal infinite precision
polynomial P*(w) follow from the Chebyshev equioscillation theorem
[19] that gives the conditions for the optimal minimax approximation
of degree n. There are at least n+2 extremal points in [a, b] at which the
approximation error achieves its maximum. Let w;, a < wp < w; <
++- < wpy1 < b, be these extremal points. Then

W(w:) <D(wi) - Z“Z cos kwi) = (-1)'d",
k=0

i=0,1,....n+1 ()

where |d*| is the optimal approximation error. No such property exists
for b-bit P(w). Approximation error e(w) is simply

W(w) (D(w) - Z ajp cos kw) = e(w). ®

k=0

Since P*(w) is unique, the approximation error increases if P(w) #
P*(w). There is € = max,<w<s |e(w)| — |d*|, where € > 0.

The problem we wish to address can be stated as follows: What is
the minimum e given the best possible coefficients ar € 1,? Let us
denote it as 6 and define it formally as

(S =

min
b—bit L(w)

e= min max |e(w)| —|d"| )

b—bit P(w) a<w<b

Using the approach developed in [12]-[14], we wish to express ¢ as a
function of differences Aay

f; * ¢
Aag = 2ay — 2aqg,

Aag = ag — ag,

2a9 € I
ar €L, k=1,2,...,n (10)
where Aao is again a special case. Combining (7) and (8) gives

I/V(wo)

e(w;) =

Aag +Z W (w;) cos kw; Aag+(—1)" sign(d*)|d*|.
k=1
)

These equations can be viewed as a system of n + 2 equations with
n + 2 unknowns. The system’s matrix is identical to the one in (7) and
is always invertible. The inverse can be written as

n+1

Aap = ngie(wi),
=0
n+1

|d*| = Z gn-‘rlie(wi)
=0

k=0,1,...,n,
12)

where ¢g; are the elements of the inverted matrix. This matrix plays a
central role in the lower bound derivation and is written explicitly

G = [gxil, (13)
Note that G depends only on sign(d*) and on extremal points w;. The
matrix elements ¢,,+1; are all nonzero, and their signs alternate, which

is of great importance for our purpose. It was shown in [16] that the
special properties of G lead to the lower bound

5> olglllfz;n min(Aakt/ fpre, Aak—/ fmk) (14)
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where Aary is the smallest positive difference Aay, from (10) and
Aay_ the smallest negative difference. The positive number f, and
the negative fo,, are equal to

ki . ki
= max -, . = 1min - 15
Tot 0<i<n+1 < gn+u) o i 0<i<nt1 ( ,(}n+1i> 15

for k. = 0,1,...,n. This lower bound uses only one of the n + 1
differences Aay, namely the one that gives the maximum in (14). An
improved lower bound can be obtained if two are used. Let us select
any two of the n 4+ 1 (12) and denote the corresponding indices as j
and (. Equation j is multiplied by a factor v and added to equation ¢,
which gives

€1 = max((Aar +vAa;)/ fpje. (Aae + yAaz)/ frmje)  (16)
where
. _ gei + 7G5
Tose = Uér}lgf{-&-l < In+1i >
. . _ gui + g5
Pt = Ué?lélil-&-l < Yn+t1i > ' 17

For a given pair Aa¢, Aayj, it is possible to compute ~ that gives the
highest possible ¢;,. The algorithm that computes v is described in
[16]. The lower bound is found by trying all feasible pairs Aa,, Aa;
and selecting the lowest €.

There are n(n + 1)/2 possible pairs 7, £, which is far too many.
In our implementation, only the row j = n is paired with rows in a
subset V. The reasons for making special row n follow from the role of
the highest degree coefficient a, . The subset V' contains the row that
gives the maximum in (14) and two additional rows with the lowest
max(| fprl, | frr|) from (15). This choice reduces the search space to
at most three pairs and greatly decreases the time needed to compute
the lower bound with a negligible lower bound reduction. The lower
bound is computed separately for positive and negative Aa,,

b4 > max min €ne
n, eV |Aa,>0,Aay

6_ > max min = €,¢ (18)
nteV |Aa, <0,Aa,

which is useful for its application in the branch-and-bound method.

Extension of this idea to three or more Aay is much more compli-
cated and leads to excessive computing times. The LLL algorithm pro-
vides a more promising approach.

IV. USING THE LLL ALGORITHM TO IMPROVE THE LOWER BOUND

The LLL algorithm [20] is based on the lattice theory, which is a
powerful concept with applications in many domains of science. It is
possible to formulate the finite wordlength design problem (4) within
the framework of lattice theory as the “closest vector problem” or CVP.
Although the CVP is NP-hard [21], this does not necessarily apply to
(4). Our problem is a special case of CVP, and there seems to be no
proof that it is NP-hard even if this seems most likely. Complexity and
lattice theory are beyond the scope of this correspondence. We will use
only those simple properties of the LLL reduced lattice basis that are
needed to improve the lower bound developed in the previous section.

The LLL algorithm is often referred to as an integer Gram—Schmidt
procedure. Let X be an arbitrary ¢ x ¢ square matrix. The LLL reduced
basis spanned by the rows of X is given by

X = UX (19)
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where U is an integer matrix and Xy, the LLL reduced basis. The LLL
algorithm computes U and Xy, in polynomial time. Note that, in (19),
the rows represent lattice vectors. This differs from the usual approach
where vectors are represented by columns. Row vectors are more suit-
able for our purpose. This is a minor complication and the LLL algo-
rithm can easily be adjusted to accommodate this change.

Many versions of the LLL algorithm exist in the literature. Since
matrix G is well behaved, we used a simple floating-point version de-
scribed in [22]. The standard value of its parameter w = (.75 was
changed to 0.60. This change increased the speed of the LLL algorithm
with negligible effect on the lower bound. The LLL reduced matrix Xy,
has several remarkable properties that make it useful in many areas. The
property that is important for our purposes is the fact that the row vec-
tors of X, are short in the Euclidean sense. More precisely, the length
of row k vector is defined as its L> norm

2 2 2 1/2

lzsells = (Lo + 2Lk + -+ ¥Lre—1) (20)

where x,,4; are the elements of matrix Xy,. In particular, the LLL al-
gorithm gives X, in which the first row vector is the shortest and the
other row vectors are also short. For our lower bound, we would like

to have
max ( >, E=0,1,...,n
0<i<n+1

as small as possible since this gives the highest lower bound (16). The
terms (21) correspond to the elements of the matrix G in which the first
n 4 1 rows are divided by the corresponding elements of the last row.
It follows from (21) that we are looking for vectors that are short in
the minimax sense. Instead of short vectors with length defined by Lo
norm (20), we need Xy, with short vectors where the length is defined
by Lo norm

ki
9n+14

@n

(22)

|zre|le = Ugnl_?ggl(lwr‘ml).

Although the LLL algorithm only gives L» short vectors, they are
still useful because the norms are related by ||x k|l < [|2zkll2 <
VIl||zLk||e. Short Ly vectors are therefore also rather short Lo
vectors, which means that the LLL algorithm will probably improve
the lower bound. To confirm this, let us first write (12) in the matrix
form

Aa = Ge. (23)
Vector Aa consists of Aay, k = 0,1,...,n,and|d"|, whereas e is the
approximation error e(w; ),i = 0, 1,...,n+ 1. We define the diagonal

n+ 2 x n+ 2 matrix C that has as diagonal elements the last row of G

Cii = Yn+1i» Cki = (), k # l (24)
Using C (23) can be written as
Aa=GC 'Ce (25)

where GC ™ is the matrix G in which all rows are divided by the
corresponding elements of the last row. Applying the LLL algorithm
on GC™! gives

G =UGC™! (26)
where U is the integer matrix. Our version of the LLL algorithm is
slightly modified: It does not use the last row of GC ™!, which means
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that this row is the same in G, and in GC~*. This important modifi-
cation is needed because our lower bound needs the property of matrix
elements g,,+1; preserved. It makes the elements of the last row and
column of integer matrix U all zero, except for the diagonal element
Un+1n+1, Which equals 1. Using (26), we can rewrite (25) as

UAa = G.Ce. 27)

We define Aar, = UAa and (27) can be written in the final form

AaL = GLCe. (28)

The elements of Aay, follow from (10) as

n n
Aary = E upAa; = <Uk026l§+ E uki“:)

1=0 =1

— (ukOQ(LO + anm) (29)

=1

for k = 0,1,...,n. Note that the sum upper limit is n and not n + 1
because of zero elements in the last column of U. Since uy; are integers
and since 2a9 € Iy and a; € Iy,i = 1,2,...,n, the second term
in (29) is an integer. This property is very important in lower bound
derivation and, of course, derives from the fact that the LLL algorithm
produces an integer U. Equation (28) now plays the role of (12) in the
previous section. It can be written explicitly as

n+1
Aapy = Z(]ujki(ﬁ(wi)a
1=0
n+1
|d*| = Z(]LOnJrlic(wi)
1=0

kE=0,1,...,n,
(30)

where ¢ ¢ are the elements of matrix G1,C. Observe that g, ¢k
are not needed for the lower bound computation. It follows from (15)
and (17) that g, cxi/grcn+1i are needed and these are equal to the
elements of matrix G,

; (€2))
JLCn+1i

JLki =
The effect of U on the original (12) can be described as an integer-mul-
tiplied addition of its rows. As mentioned previously, the LLL algo-
rithm ensures that this addition produces short vectors and therefore
a better lower bound. The derivation of the LLL based lower bound
is simply the repetition of steps (14)—(16) with gr.c; instead of gx;.
Equations (15) become
(32)

frpe = O<I}l§a;3(+1(_ngi)-, frme = OS{}gi}+l(_ngi)

for k = 0,1,...,n. Similarly, (17) becomes
Oglzngﬁ_l(_gllli = Y9L5i)

min  (—gre; — Y914 )-
ogign+1( gLt = 9Ly

prjl =
frmje = (33)
The role of aj, is now taken by the coefficients a7 ;,

n
ary = upo2ay + § wpiar, k=0,1,...,n.

=1

(34)

For any set of coefficients a} ;, we see from (29) that there exist in-
tegers, not necessarily from I, that are the nearest upper and lower
neighbors of aj . Coefficient a7 is no longer a special case because
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it is now a linear combination of many a,. The smallest positive dif-
ference is denoted Aa 4, whereas the smallest negative difference is
Aar—. The simple lower bound (14) now equals

61, > Jmax min(Aary/frpr, Aare—/frme). (35)
Similarly, € ;¢ is computed as in (16):
max((Aape +vAar;)/ frpjes (Dape +vAar;)/ fomje)  (36)
and the lower bound equals
bz e | iy, o] 4D

Note that there are differences between (37) and (18). The row n does
not plays a special role anymore because it follows from (29) that Aa .,
is a function of several coefficients ;. and not only of a,, as before. The
row j is now the row that gives the maximum in (35) and is paired with
rows in the subset V', which now contains three rows with the lowest
max(|frpe|s | frme|) in (32).

Since the LLL algorithm gives L and not L., short vectors, it can
sometimes occur that 67, is lower than 64+ and/or 6_ from (18). In our
implementation, we therefore compute

61+ = max(6r,64+), 67— = max(6r,5-). (38)
This gives a somewhat better lower bound than é; and is also justi-
fied computationally because it costs very little to compute 64 and 6—.
Computing matrices G, G1., and U is the most demanding part of
lower bound computation.

V. APPLICATION OF THE LOWER BOUND

The branch-and-bound method is by far the most widely used tool for
solving NP-hard combinatorial optimization problems. It is based on
the idea of intelligent enumeration which splits the initial problem into
many subsets [23]. Branch-and-bound is not one specific algorithm, but
rather a very wide class. For each specific problem type, it has to be
filled out with details without which our lower bound derivation would
not be complete. A good starting finite wordlength solution is needed
prior to the start. Rounding the infinite precision coefficients aj, is one
possibility. We use a much better approach that is called “telescopic
rounding” [24] and almost always gives a better starting solution. Its
approximation error E,;, is the starting upper bound for the optimal
solution Emin.

The search consists of node selection. Constraints are added to the
selected node, thereby creating subproblems. In our implementation,
we use the Remez algorithm for subproblem solving. This means that,
for each node, the new constraint must always be applied to the highest
degree coefficient a; that is not yet from I;,. Or in other words, the
constraints begin with a,, and continue with a,_1,an—2,...,a1,ao.
Any other choice of coefficient constraints violates the Haar condition
[19], and both the Remez algorithm and our lower bound do not work.

Two subproblems are created from the infinite precision solution by
making the coefficient a,, equal to

all) = lan .

where |a;, | denotes the nearest lower integer to aj,, and the super-
scripts (1) and (2) denote the node number. These two subproblems
are of degree n — 1, and the effect of fixed agz ) is taken into account by
using D(l)(;u) = D(w) — ad cos nw, instead of D(w) (for node (2)
DP(w) = D(w) - at? cos nw). Since both subproblems are treated
in the same manner, we will give a description for node (1) only. The

al? =lan]+1, oV e, (39
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subproblem is solved using the Remez algorithm giving a set of infi-
nite precision coefficients az(l), k = 0,1,...,n — 1 and the corre-
sponding approximation errors |d*")|. The matrix G is computed as
described in (11)—(13), and the LLL algorithm is applied producing
matrices U and G, as described in (23)—(28). The LLL coefficients

Z(IJ ) ,k=0,1,...,n — 1 are computed using (34), and the following
three lower bounds are computed.
1) Positive Aan_1 are used and the lower bound 67, is computed

using (38). It is denoted s¢ I + and will be applied later to subprob-
lems that are created by constraining az(_l)l to lower integers. It
follows from (10) that such constraints always give Aag ) , > 0.
2) Negative Aan , are used and the lower bound &, is computed
using (38). It is denoted 6(Lll and will be applied to subproblems

that are created by constraining a*m to higher integers.
3) This lower bound is used for subproblems that are created by re-
placing a'? from (39) with alt — 1 and, if necessary, also with
al) —2,40 - 3, and so on until all feasible values of reduced
asl ) are explored (correspondmgly, an ) i replaced with a, SN
and, if necessary, also with a‘n —l— 2, a‘n —|— 3, and so on). For these
subproblems, it is possible to compute the lower bound using the
already computed matrices G, U, and G1.. To see how this is
done, let us replace D™ (w) with D™ (w) + cos nw (correspond-
ingly, D® (w) with D® (w) — cos nw). The approximation error
|(l*(1) | and the coefficients a k( ) can be computed simply as
akg = 2(1) + Z i W (w;) cos nw; (40)

=0
= |d*(l)| + Zg,,ﬂV(uJ;) cos nw;.
i=0

;" (41)

Again, coefficient £ = 0 is a special case with ’)ao( ) and Za*(l)
in (40). Lower bound 80 = min(64, 6_) is computed from (19)
using coefﬁc1ents a L( ) Note that there are no restrictions on the
sign of Aan_1 , which is why min (64, §—) must be used. Next,
the LLL coefficients az(kz k= 0,1,...,n — 1, are computed
from a k(l) using (34) and the LLL lower bound (5113 is computed
with (37). Both bounds are combined into

84" = max (;#L‘l?, 8 ‘)) (42)

Since 6(L / is computed relative to |dz(1) |, and we need a lower
bound relative to |d*(*)], the following formula is used:

8 =@z = | ™| +6) 43)

where 6(;2 is our third lower bound. This bound, however, is
useful only if |d*(1)| [¢*(Y| > 0. It must be set to zero oth-
erwise since Ld « )| — |&*("| can become even more negative for

al 2.4 3,....
Having all three bounds, we now store the subproblem (1) as a node
in the tree. Information stored includes ag) , which is a fixed integer,

plus |[d*)], fl(_l)l 65}1, (5(1) and (5(;2,. Information about the direction
of a&” creation relative to a;, must be stored as well. From (39), we see

that ag) is lower than a};, which is denoted as negative direction —1.
All of the above is repeated for subproblem (2), which is also stored
as a node in the tree. Since the subproblem (2) was created by (39), its
direction is positive +1.

Creation of the first two nodes represents a preparation for the
branch-and-bound search. From here on, all nodes are handled in a
slightly different manner. Three, not two, new subproblems are always
created from the selected node, and the lower bounds are used to
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TABLE I
RESULTS OF THE LOWER BOUND EFFECTIVENESS

Number of subproblems Computing time
Filter No Old LLL No Old LLL

bound bound bound bound bound | bound

A35/8 1991 786 655 0.08 0.05 0.05
A45/9 6023 2384 1919 0.41 0.23 0.23
AS55/10 202727 78490 67126 17.10 10.86 8.91
B35/9 7082 2839 1667 0.31 0.14 0.11
B45/10 82283 32783 18735 4.96 2.45 1.67
B55/11 146405 58145 40361 13.53 6.57 5.40
C35/8 5024 1861 1549 0.16 0.10 0.09
C45/8 48074 18058 15304 2.34 1.17 1.26
C55/9 4636823 | 1802217 | 1476585 | 462.68 | 207.70 | 187.64
D35/9 35324 13419 7614 1.09 0.55 0.39
D45/9 245975 94377 53032 12.48 5.97 4.24
D55/10 | 2736803 | 1093386 665419 | 266.03 | 125.80 88.56
E35/8 3836 1466 1273 0.14 0.08 0.09
E45/9 15107 5746 4944 0.86 0.45 0.45
E55/10 80369 30787 27388 6.79 3.34 3.49
Total 8253846 | 3236744 | 2383571 | 788.96 | 365.28 | 302.58

decide which subproblems are worth solving. Assume that the node
containing subproblem (1) is the selected node. Three subproblems
are created with the following constraints:

& = 1,
0, = o)

Note that —1 in (44) is used because the stored direction of node (1) is
—1 (for node (2) there would be +1). Subproblem (44) is solved and
stored as a new node in the tree only if there is |d* (") |—|—<5(ng < Eyp. Ob-
viously, if this is not true this subproblem cannot lead to a solution that
is better than E',;, and is therefore discarded. Since minimax approx-
imation is a convex optimization problem, this also applies to all sub-
problems with constraints all - 2, all - 3,. ... Similarly, the subprob-
lems (45) need to be solved only if the conditions |d*()| 4 68 J)r < Eup
and |4*| 4 6V < E,, hold.

The lower bounds 55}_3, bg}l, and b(lll eliminate a large number of
subproblems without the need to solve them first. A combination of
depth-first and lowest lower bound strategy was used for node selec-
tion. Several other strategies were also tried, and the experience shows
that they have little effect on the number of subproblems that must be
solved. In most cases, the optimal solution is found within the first 10%
to 20% of subproblems. This is followed by a long tail of remaining

subproblems, which is independent of selection strategy.

cz&f’) el
al), = LGZ(HJ +1,

(44)
a0 e 1,. 45)

n—1

VI. RESULTS

Fifteen filters with five different sets of frequency-domain specifi-
cations, denoted A through E, were used for testing. The frequency
specifications are identical to those that were used in [7] and [16] and
are given there. We denote by A35/8 the filter design problem for spec-
ification A4, length N = 35 (n = 18 independent coefficients), and
b = 8 bits (sign included); similarly for A45/9, B35/9, and so on. Con-
stant scaling factor s = 2°~2 was used in all design cases.

As expected, the LLL lower bound was found to be better than the
old lower bound given by (18). Table I shows a summary of the results,
comparing the number of branch-and-bound subproblems that must be
solved when lower bound is not used, when the old lower bound is used,
and when the LLL lower bound is used. The corresponding computing
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times in seconds on a 2.67 GHz Intel Core i7 processor are also given.
All computations were done using 64-bit arithmetic and only one pro-
cessor core was used for easier comparison with the older results. It is
well known that the branch-and-bound method is easily adaptable to
multi core implementation. The computing times were reduced by a
factor of almost three when four cores were used.

The results show that the LLL lower bound consistently gives the
lowest number of subproblems. The average reduction is about 35%.
Because of the time needed by the LLL algorithm, our implementa-
tion gives only an average 20% reduction in computing time. Note that
the computing times depend on the machine and/or programmer skills,
which makes the reduction of subproblems more relevant.

The savings are not dramatic. However, there is space for consid-
erable additional improvements. An obvious way is to use a more ef-
ficient realization of the LLL algorithm. A more promising approach
is to use a version of the LLL algorithm that uses the Lo, norm. This
would reduce the number of subproblems and lead to more significant
savings. Whether such versions of the LLL algorithms can be made fast
enough is still an open question. The method presented in this corre-
spondence can be considered a new first step towards a better solution
of the finite wordlength Chebyshev approximation problem.

A comment on the filter length is also in order here. For all finite
wordlength filters, there exists a maximal filter length Npa and the
corresponding number of coefficients nmax. If the number of coeffi-
cients n is increased beyond nmax, the additional coefficients are all
zero. For example, filters A45/9 and C45/8 both have Npax = 43
(max = 22). Obviously, these filters do not get any better by using
N > 43. The computing times, however, increase considerably. No
quick and simple method that finds Npax is known, and this remains
an interesting open problem.
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Reconstruction of Uniformly Sampled Sequence From
Nonuniformly Sampled Transient Sequence Using
Symmetric Extension

Sung-Won Park, Wei-Da Hao, and Chung S. Leung

Abstract—In this correspondence, reconstruction of a uniformly sam-
pled sequence from a nonuniformly sampled transient sequence using sym-
metric extension is described. First, a relationship between the discrete
Fourier transform (DFT) of a uniformly sampled sequence and the DFT of
a nonuniformly sampled sequence is obtained. From the relationship, the
formula to reconstruct the DFT of a uniformly sampled sequence from the
DFT of a nonuniformly sampled sequence is derived when the nonuniform
sampling ratios are known. Second, a symmetric extension of the nonuni-
formly sampled sequence is described to avoid discontinuity that adds high-
frequency content in the DFT. Finally, experimental results are presented.

Index Terms—Discrete Fourier transform (DFT), nonuniform sampling,
symmetric extension, uniform sampling.

I. INTRODUCTION

In many applications, it is desired to reconstruct a uniformly sam-
pled sequence from a nonuniformly sampled sequence. Early works on
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Fig. 1. Uniform and nonuniform sampling. T" is the sampling interval for uni-
form sampling, ,, is the nonuniform sampling ratio, and /V is the number of
samples.

recurrent nonuniform sampling are available in the literature [1]-[7].
Recurrent nonuniform sampling means that a continuous-time signal is
sampled nonuniformly with a periodic pattern. Recurrent nonuniform
sampling problems occur in sampling of a high frequency signal using
a very high-speed waveform digitizing system with interleaved A/D
converters [2], [3]. Early works on recurrent nonuniform sampling con-
sidered sampling of relatively long signals. For example, the number of
samples considered in [4] was 512 and the number of samples consid-
ered in [5] was 2048. Recurrent nonuniform sampling has also been ap-
plied to image enhancement where resolution of an image is increased
beyond the number of pixels available in the camera by using multiple
aliased copies of unknown relative sampling offsets [6]. On the other
hand, recurrent nonuniform sampling described in [2] and [4] has been
extended to two-dimensional signals [7]. There are two main differ-
ences between [6] and [7]. There is a constraint in the nonuniform sam-
pling ratios in [7] and there is no such a constraint in [6]. Nonuniform
sampling ratios are estimated from multiple copies in [6] by iteration,
but they are estimated by using a prescribed sinusoidal signal in [7]
without iteration.

Reconstruction of uniformly sampled sequence from nonuniformly
sampled sequence without any periodic pattern is described in this cor-
respondence. This reconstruction technique is useful when one is in-
terested in reconstructing a short transient sequence. A short sequence,
whose length is only 20, is considered in this correspondence.

The correspondence is organized as follows. In Section II, a rela-
tionship between the DFT of a uniformly sampled sequence and the
DFT of a nonuniformly sampled sequence is obtained. From the re-
lationship, the formula to construct the DFT of a uniformly sampled
sequence from the DFT of a nonuniformly sampled sequence is de-
rived when the nonuniform sampling ratios are known. In Section III,
symmetric extension of a sequence to avoid a discontinuity that unduly
adds high frequency content in the DFT is explained. In addition, re-
sults of reconstruction experiments using no extension and symmetric
extension are presented. Finally, a conclusion is made in Section IV.

II. RELATIONSHIP BETWEEN UNIFORM SAMPLING AND
NONUNIFORM SAMPLING

Suppose a continuous-time signal, z(¢), is sampled uniformly att =
0,7,2T,...,(N —1)T where T is the sampling interval (see Fig. 1).
The DFT of the uniformly sampled sequence, x(n), for

n=20,1,2,...,N — 1, is given by
N—1 =
X(k)=> a(n)e ' ¥ fork=0,1,2,...,N =1 (1)
n=0

where x(n) = x(nT) for all n. The IDFT is given by

N—-1

! Y X®F N forn=0,1.2,....N~1. (2
k=0

N

z(n) =
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