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Abstract. The need to solve a polynomial minimax approximation problem appears often in science. It is
especially common in signal processing and in particular in filter design. The results presented in this paper
originated from a study of the finite wordlength restriction in the FIR digital filter design problem. They are,
however, much more general and can be applied to any polynomial minimax approximation problem in which the
polynomial coefficients are constrained to a finite set of numbers. The finite set restriction introduces a nonzero
lower bound to the approximation error. For any given non-trivial function that is to be approximated there is a
nonzero lower bound below which it is not possible to go, no matter how large the polynomial degree n. For
practical purposes it is very useful to know this lower bound because it can be used to substantially increase the
speed of the branch-and-bound algorithm that gives the optimal integer coefficients. A method for computing such
a bound is presented in the paper.
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Spodnja meja aproksimacijske napake pri celoštevilski polinomski
minimax aproksimaciji

Povzetek. Potreba po rešitvi polinomskega minimax aproksi-
macijskega prooblema se pogosto pojavlja v znanosti. Posebno
običajna je v procesiranju signalov in še posebej pri načrtovanju
filtrov. V tem članku opisani rezultati so nastali iz študija vpliva
omejitve dolžine besede na načrtovanju KEO digitalnih filtrov.
Vendar so rezultati bistveno splošnejši in jih je mogoče upora-
biti pri vsaki polinomski minimax aproksimaciji, pri kateri so
koeficienti omejeni na končno množico števil. Omejitev na
končno množico ima za posledico pojav neničelne spodnje meje
aproksimacijske napake. Za vsako netrivialno funkcijo, ki jo
želimo aproksimirati, obstaja spodnja meja aproksimacijske na-
pake pod katero ni mogoče priti ne glede na to kako velika je
stopnja polinoma n. Za praktične namene je zelo uporabno poz-
nati to spodnjo mejo, ker omogoča bistveno povečanje hitrosti
branch-and-bound algoritma, ki daje optimalne celoštevilske
koeficente. V članku je podana metoda za izračun te meje.

Ključne besede: kombinatorična optimizacija, celoštevilsko
programiranje, minimaks aproksimacija, načrtovanje digitalnih
filtrov

1 Introduction

The unconstrained polynomial coefficients which are eas-
ily obtained by some standard approximation algorithm,
are often called “infinite precision” coefficients. They are
typically 32-bit floating point numbers and are of course
hardly of infinite precision. But the 32-bit wordlength is
much longer than 8 or 10-bit wordlengths that we would
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like to use in practical applications. One may, for ex-
ample, wish to use a fixed point DSP processor which is
cheaper and/or faster than a floating point one. The num-
ber of bits b that can be used to represent the coefficients
(of an FIR digital filter, for example) will in general de-
pend on the polynomial degree n, processor properties,
and on signal quantization. It is almost always desirable
that the coefficients are represented with a number of bits
b that is as small as possible.

Note that a digital filter is used here as an example
only (albeit an important one). The above reasoning is
much more general and holds for any device that is based
on the solution of the minimax approximation problem.
The difficulty is that solving this problem, with the co-
efficients constrained to b-bit integers, is very hard. The
problem is NP-complete and all known algorithms are ex-
ponential. They work only if the polynomial degree n is
relatively small. It was shown in [1] that it is possible
to solve the integer minimax approximation problem us-
ing the general purpose integer programming techniques.
The problem with this approach is that it is slow and may
not give the result in a reasonable time. A better approach
is to use an algorithm that is tailored to the specifics of
the minimax approximation. Such an algorithm requires
solutions of a large number of suitably redefined uncon-
strained minimax approximation problems. It is crucial
for the success of the algorithm to have a technique that
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minimizes the number of these subproblems. A lower
bound for the increase of minimax approximation error
is such a technique and is presented in this paper.

2 Formulation of the problem

Let us start with the usual unconstrained polynomial min-
imax approximation problem in which the polynomial co-
efficients aj can be any real numbers. The class of gener-
alized polynomials p(x) of degree n is defined as

p(x) =
n∑

j=0

ajΦj(x), (1)

where Φj(x), j = 0, 1, · · · , n, is a polynomial basis. Any
basis can be used as long as it satisfies the Haar condi-
tion (see [3] for the description of the Haar condition).
Note that this definition includes the usual polynomials
(Φj(x) = xj , j = 0, 1, · · · , n) and cosine polynomi-
als (Φj(x) = cosj x, j = 0, 1, · · · , n) as a special case.
The cosine polynomials are used in the FIR digital filter
design case, although this is not important here. The min-
imax approximation problem is defined as the search for
the polynomial p(x) that that minimizes the expression

‖D − p‖∞ = max
a≤x≤b

|W (x)(D(x)− p(x))|. (2)

D(x) is the real function that is to be approximated, the
weighting function W (x) is by definition real and posi-
tive, and the interval [a, b] is a subset of the real line.

Let p∗(x) be the optimal approximation to D(x)

p∗(x)=
n∑

j=0

a∗jΦj(x),

‖D − p∗‖∞≤‖D − p‖∞, ∀p(x).
(3)

Several algorithms, from linear programming to various
versions of the exchange algorithm, can be used to find
p∗(x) [3]. Finding the p∗(x) is considered an easy pro-
blem. The main reason for this is the following well-
known property of the optimal minimax approximation:
There are exactly n+ 2 so called extremal points in [a, b]
at which the approximation error achieves its maximum.
Let xi, i = 0, 1, · · · , n+ 1, be these extremal points. The
following equations hold

W (xi)(D(xi)−
n∑

j=0

a∗jΦj(xi)) = (−1)ih∗, (4)

for i = 0, 1, · · · , n + 1, and |h∗| is the optimal approxi-
mation error.

Things change dramatically when coefficients aj are
constrained to values from a finite set of numbers. We
can, without loss of generality, make this set equal to
a set of b-bit integers {−2b−1, · · · ,−1, 0, 1, · · · , 2b−1}.
Note that the integers are chosen for convenience only;
any other finite set of real numbers can be used instead.

This will in most practical cases also require multiplica-
tion of D(x) and division of W (x) by a suitable scaling
factor S. Selection of the scaling factor S is not trivial; it
will, however, be ignored in this paper because we wish
to concentrate on the lower bound derivation. In other
words, D(x) and W (x) are left unchanged, and the ap-
proximating polynomial p(x) is from here on defined as

p(x) =
n∑

j=0

ajΦj(x), (5)

where aj ∈ {−2b−1, · · · ,−1, 0, 1, · · · , 2b−1}. The pro-
blem of finding the optimal integer polynomial p(x) is
much more difficult than the unconstrained case, although
it may not appear so at first.

The problem we wish to solve can be stated like this:
What is the lower bound on the increase of approximation
error that is caused by the b-bit integer constraint? Let us
denote this lower bound as δ and define it formally as

δ ≥ min
b-bit p(x)

(‖D − p‖∞ − |h∗|). (6)

Note that δ is defined over all b-bit integer polynomials of
degree n, not just one particular p(x).

3 Lower bound theorem

Let us investigate the case of a particular polynomial p(x)
first. Assume that its coefficients aj are known and that
they are different from a∗j . We wish to compute δ for this
p(x). A special property of all functions that satisfy the
Haar condition is useful here [3]. It says that there always
exist multipliers σi, i = 0, 1, · · · , n+ 1, not all zero, that
satisfy the conditions

n+1∑
i=0

σiΦj(xi) = 0, j = 0, 1, · · · , n, (7)

for any (n+2) points xi from the interval [a, b]. It is easy
to see that equations (1) and (7) imply

n+1∑
i=0

σip(xi) = 0, (8)

for any p(x). The numbers σi, i = 0, 1, · · · , n + 1, have
a very important property. All are nonzero and their signs
alternate. That is

sign(σi+1) = − sign(σi), i = 0, 1, · · · , n. (9)

The numbers σi are needed to prove the following
theorem for the lower bound δ when a p(x) is known:

Theorem 1 Let p∗(x) be the optimal weighted minimax
approximation to a real function D(x) on the interval
[a, b] and let p(x) be any other polynomial. Then the in-
crease in approximation error δ is bounded by

δ ≥ max
0≤i≤n+1

|ciW (xi)(p∗(xi)− p(xi))|, (10)
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where xi are extremal points corresponding to p∗(x) and
multipliers ci, i = 0, 1, · · · , n+ 1, are defined as

ci=




| σi

W (xi)
|

n+1∑
k=0
k �=i

| σk

W (xk)
|

if (−1)ih∗(p∗(xi)− p(xi)) < 0

1 if (−1)ih∗(p∗(xi)− p(xi)) ≥ 0.
(11)

Proof: The approximation error e(x) of a polynomial
p(x) is equal to

e(x) = W (x)(D(x)− p(x)). (12)

By subtracting (4) it can be rewritten as

e(xi) = (−1)ih∗ +W (xi)(p∗(xi)− p(xi)),
i = 0, 1, · · · , n+ 1,

(13)

where xi are extremal points. The error e(xi) depends on
the sign of p∗(xi)− p(xi) relative to the sign of (−1)ih∗

(W (x) is by definition positive). Let us divide the set
of extremal points {xi; i = 0, 1, · · · , n + 1} into two
subsets. The subset ZM contains points xi for which
(−1)ih∗(p∗(xi) − p(xi)) < 0. The rest of the points
xi form the subset ZP .

Let us examine the points in ZP first. Both terms of
(13) have the same sign and the error |e(xi)| is simply
equal to

|e(xi)| = |h∗|+ |W (xi)(p∗(xi)− p(xi))|, xi ∈ ZP .
(14)

This corresponds to (10) and (11) with ci = 1 and proves
the theorem for the points in ZP .

Things are more complicated for the points in ZM .
We start by rewriting (13) as

e(xi)
W (xi)

=
(−1)ih∗

W (xi)
+ p∗(xi)− p(xi). (15)

By multiplying each of the equations (15) with the cor-
responding multiplier σi defined in (7) and adding them
together we get

n+1∑
i=0

σi

W (xi)
e(xi) =

n+1∑
i=0

(−1)ih∗
σi

W (xi)
, (16)

where (8) was used to eliminate p∗(xi) − p(xi). Let xr

be any point from ZM . Eq. (8) can be rewritten as

n+1∑
i=0
i �=r

σi

W (xi)
e(xi) =

n+1∑
i=0
i �=r

(−1)ih∗
σi

W (xi)
−

− σr(p∗(xr)− p(xr)).

(17)

It follows from (9) that all the terms (−1)ih∗σi, i =
0, 1, · · · , n + 1, have equal sign. Since the signs of

(−1)rh∗ and p∗(xr) − p(xr) are by definition opposite
for the points in ZM we must also have

|
n+1∑
i=0
i �=r

σi

W (xi)
e(xi)| = |h∗|

n+1∑
i=0
i �=r

| σi

W (xi
| +

+ |σr(p∗(xr)− p(xr))|, xr ∈ ZM .

(18)

The maximum absolute error emax over all extremal
points xi is defined as

emax = max
0≤i≤n+1

|e(xi)|, (19)

and it now follows from (18) that emax is bounded by

emax ≥ |h∗|+
| σr

W (xr)
|

n+1∑
i=0
i �=r

| σi

W (xi)
|
W (xr)|p∗(xr)− p(xr)|.

(20)
This is exactly what the theorem states for the points in
ZM and completes the proof.

Theorem 1 can be used to compute the lower bound
δ for a given p(x). The cis are easily obtained from eq.
(11) since the sign of (−1)ih∗(p∗(xi)− p(xi)) is known.
But we are not really interested in the case of a single
p(x). Instead, we need a lower bound δ that holds for all
p(x) with integer coefficients ai. This lower bound will
be derived in the next section.

4 Lower bound over all integer polynomials

To compute a lower bound over all integer polynomials
p(x), it is necessary to express δ as a function of differ-
ences a∗j − aj , j = 0, 1, · · · , n. This will be done follow-
ing an approach similar to the one used in [4]. We start
by writing the following system of n + 2 equations with
n+ 2 unknowns

e(xi)
W (xi)

=
n∑

j=0

(a∗j − aj)Φj(xi) +
(−1)i

W (xi)
h∗,

i=0, 1, · · · , n+ 1,

(21)

where equations (4) and (13) were used. The unknowns
are a∗j − aj and h∗. The system matrix is identical to the
one in (4) which is already solved to get a∗j . This means
that (21) is always invertible. The inverse can be written

a∗j − aj =
n+1∑
i=0

gji
e(xi)
W (xi)

, j = 0, 1, · · · , n,

h∗=
n+1∑
i=0

gn+1i
e(xi)
W (xi)

,

(22)

where gji are the elements of the inverted matrix. To ex-
press the differences a∗j − aj in terms of p∗(xi) − p(xi)
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insert (13) into (22)

a∗j − aj =
n+1∑
i=0

gji(p∗(xi)− p(xi) +
(−1)i

W (xi)
h∗),

h∗=
n+1∑
i=0

gn+1i(p∗(xi)− p(xi)+
(−1)i

W (xi)
h∗).

(23)

Setting aj = a∗j for all j gives p(x) = p∗(x) for all x and
the following property of matrix [gji] is revealed

n+1∑
i=0

gji
(−1)i

W (xi)
=0, j = 0, 1, · · · , n, (24)

n+1∑
i=0

gn+1i
(−1)i

W (xi)
=1. (25)

Equations (23) can be rewritten as

a∗j − aj=
n+1∑
i=0

gji(p∗(xi)− p(xi)), j = 0, 1, · · · , n, (26)

0=
n+1∑
i=0

gn+1i(p∗(xi)− p(xi)). (27)

A very useful property of the coefficients gn+1i follows
from (27). Since p(x) can be any polynomial it is obvious
that gn+1i are the multipliers σi described in (7) and (8).
This means that the signs of gn+1i alternate as

sign(gn+1i+1) = − sign(gn+1i), i = 0, 1, · · · , n. (28)

Before continuing let us first simplify the notation by
defining the modified matrix [tji]

tji = sign(h∗)
(−1)igji

W (xi)
, j, i = 0, 1, · · · , n+ 1. (29)

The matrix [tji] has the following properties that come
directly from (24) and (25)

n+1∑
i=0

tji =0, j = 0, 1, · · · , n, (30)

n+1∑
i=0

tn+1i =sign(h∗). (31)

Let us now use tji instead of gji and multiply and divide
each term in (26) and (27) by (−1)iciW (xi)

a∗j−aj=
n+1∑
i=0

tji

ci
sign(h∗)(−1)iciW (xi)(p∗(xi)−p(xi)),

0=
n+1∑
i=0

tn+1i

ci
(−1)iciW (xi)(p∗(xi)− p(xi)).

(32)
These equations contain the terms ciW (xi)(p∗(xi) −
p(xi)) that appear in Theorem 1. It follows from (32)

that the lower bound δ is equal to

δ ≥ max
0≤i≤n+1

|ciW (xi)(p∗(xi)− p(xi))|

≥ max
0≤j≤n



|a∗j − aj |
n+1∑
i=0

| tji

ci
|


.

(33)

There is a small problem here because the sign of p∗(x)−
p(x) is required by (11) in order to compute cis. But this
is easily solved since (33) assumes that the signs of all the
terms in (32) are equal. Or formally

sign(a∗j−aj) = sign(tji sign(h∗)(−1)i(p∗(xi)−p(xi))),
(34)

for all i and j. This means that the (−1)ih∗(p∗(xi) −
p(xi)) < 0 criterion in (11) can be replaced by tji(a∗j −
aj) < 0. It is again convenient to divide the points xi into
the subsets ZMj and ZPj

xi ∈
{
ZMj if tji < 0,
ZPj if tji ≥ 0 .

(35)

Note that ci = 1 for xi ∈ ZPj if a∗j − aj ≥ 0 and for
xi ∈ ZMj if a∗j − aj < 0. The denominator of (33) can
be written as

n+1∑
i=0

| tji

ci
| =




∑
xi∈ZPj

tji

ci
−

∑
xi∈ZMj

tji if a∗j − aj < 0

∑
xi∈ZPj

tji −
∑

xi∈ZMj

tji

ci
if a∗j − aj ≥ 0.

(36)
Let us now remove the assumption about knowing the

coefficients aj . This is necessary in order to get the lower
bound for δ (equation (6)) which is valid over all integer
polynomials p(x). For any set of optimal coefficients a∗j
there exist integers aj+ and aj− that are the nearest up-
per and lower neighbors of a∗j . In other words, aj+ is an
integer that gives the smallest (in an absolute sense) nega-
tive difference a∗j −aj and aj− is an integer that gives the
smallest positive difference a∗j −aj . Having aj+ and aj−
it is easy to compute δ by simply inserting aj+ and aj−
with the corresponding part of (36) into (33). The lower
of two values δ is our lower bound because it is obvious
that there are no integer coefficients aj that could possibly
give lower deviation increase.

5 Improved lower bound

The lower bound δ that can be computed by (33) and (36)
depends on the partitioning of extremal points xi into the
sets ZPj and ZMj . It follows from the set definitions (35)
that partitioning into ZPj and ZMj depends on the sign
of tji only. This sign, however, can be easily changed by
multiplying the lower of the equations (32) with a suitable
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factor f and subtracting it from the other equations. The
new set of equations

a∗j −aj =
n+1∑
i=0

tji − ftn+1i

ci
sign(h∗)(−1)i ·

· ciW (xi)(p∗(xi)− p(xi)), j = 0, 1, · · · , n,
(37)

leads to an improved lower bound. Note first that a spe-
cial property of the matrix coefficients tn+1i ensures that
factors which make ZPj or ZMj empty always exist. We
see from (28) and the definition (29) that

sign(tn+1i+1) = sign(tn+1i), i = 0, 1, · · · , n. (38)

But the left side of the lower of equations (32) is zero; this
means that tn+1i can always be multiplied by −1 without
any change to the left side. The coefficients tn+1i in (37)
can therefore always be used as if they are positive.

Let us now define the factor f = fmj which makes
the set ZPj empty. It follows from (36) that this is useful
for a∗j − aj < 0 and occurs when

tji − fmj |tn+1i| < 0, i = 0, 1, · · · , n+ 1, (39)

where the absolute values of tn+1i are used to take advan-
tage of the fact that, as discussed above, they can be used
as positive. Before continuing let us simplify the notation
by defining the modified coefficients t′ji

t′ji =
tji

|tn+1i|
, j, i = 0, 1, · · · , n+ 1. (40)

Factor fmj is nonzero and positive because it follows
from (30) that there is always at least one positive tji.
Since all the terms tji − fmj |tn+1i| are negative the up-
per of equations (36) becomes equal to

n+1∑
i=0

| tji

ci
| = −

n+1∑
i=1

(tji − fmj |tn+1i|) = fmj . (41)

Properties (30) and (31) of tji were used in (41). Factor
fmj should be as small as possible. The smallest possible
fmj that satisfies (39) is equal to

fmj = max
0≤i≤n+1

t′ji = t′ji0 , (42)

where i = i0 denotes the index i at which the maximum
is obtained. A similar factor f = fpj which makes the set
ZMj empty must satisfy

tji − fpj |tn+1i| ≥ 0, i = 0, 1, · · · , n+ 1. (43)

The factor fpj is nonzero and negative because there is
always at least one negative tji. The equation for fpj is

n+1∑
i=0

| tji

ci
| =

n+1∑
i=1

(tji − fpj |tn+1i|) = −fpj . (44)

Again, the factor fpj should be as small (in an absolute
sense) as possible. The smallest possible fpj is equal to

fpj = min
0≤i≤n+1

t′ji = t′ji0 , (45)

where i = i0 again denotes the index i at which the mini-
mum is obtained.

Equation (33) can now be rewritten as

δ ≥




max
0≤j≤n

(
a∗j − aj

−fmj

)
if a∗j − aj < 0

max
0≤j≤n

(
a∗j − aj

−fpj

)
if a∗j − aj ≥ 0.

(46)

This equation does not need the multipliers ci at all and
is remarkably easy to compute. However, we still need
to prove formally that it gives a better lower bound than
(33). This is done in the following theorem.

Theorem 2 Partitioning of extremal points xi by factors
fmj or fpj , defined by (42) and (45), always leads to a
lower bound δ that is at least as good or better (higher)
than the bound which does not use fmj or fpj .

Proof: The δ that uses fmj and fpj (46) and δ that does
not use them (33) differ in the denominators only. Prov-
ing that using fmj and fpj results in better lower bounds
is therefore equivalent to proving that their denominators
are lower (in an absolute sense). In order to do this ex-
amine the multipliers ci which are defined by (11). Tak-
ing into account that σis are equivalent to gn+1is (see eq.
(28)) we get

ci =
| σi

W (xi)
|

n+1∑
k=0
k �=i

| σk

W (xk)
|

=
| gn+1i

W (xi)
|

n+1∑
k=0
k �=i

| gn+1k

W (xk)
|

=
|tn+1i|

n+1∑
k=0
k �=i

|tn+1k|
,

(47)
where definition (29) was also used. According to (31)
the sum of all |tn+1k| equals 1 and cis are also equal to

1
ci

=
1

|tn+1i|
− 1, i = 0, 1, · · · , n+ 1. (48)

Let us use this and prove the case a∗j − aj < 0 first. The
denominator in (33) is given by (36) and can be rewritten∑

xi∈ZPj

tji

ci
−

∑
xi∈ZMj

tji =

∑
xi∈ZPj

t′ji −
∑

xi∈ZPj

tji −
∑

xi∈ZMj

tji =
∑

xi∈ZPj

t′ji ,
(49)

where
∑

xi∈ZPj
tji +

∑
xi∈ZMj

tji = 0 comes from (30).
Since fmj is defined by (42) there is also∑

xi∈ZPj

t′ji = fmj +
∑

i∈ZPj
i �=i0

t′ji . (50)

Now fmj is positive and so are all the t′ji in ZPj . The
absolute value of (50) cannot be lower than |fmj | and the
theorem is proved for a∗j − aj < 0 . The proof for a∗j −
aj ≥ 0 is almost identical and need not be repeated.
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6 Level 2 lower bound

The lower bound derived in the previous section can be
significantly improved if 2 (or more) equations from (37)
are multiplied and subtracted. We will call this “level 2
lower bound”. Let us start by multiplying the equation
j = k with a factor γ and subtracting it from equation
j = l. Equations (37) are replaced by

a∗l−al− γ(a∗k − ak) =
n+1∑
i=0

(tji − γtki − ftn+1i) ·

· sign(h∗)(−1)iW (xi)(p∗(xi)− p(xi)),

(51)

where cis are now omitted. Following the same approach
as before we define factors f = fmlk and f = fplk as

tli − γtki − fmlk|tn+1i| < 0, i = 0, · · · , n+ 1, (52)

tli − γtki − fplk|tn+1i| ≥ 0, i = 0, · · · , n+ 1. (53)

The smallest fmlk that satisfies (52) is

fmlk = max
0≤i≤n+1

(t′li − γt′ki) = t′li0 − γt
′
ki0 , (54)

where i = i0 again denotes the maximal index. The
smallest (in an absolute sense) fplk that satisfies (53) is
similar (max is replaced by min). The level 2 lower
bound δlk (equations l and k) for a∗l −al−γ(a∗k−ak) < 0
can now be written as

δlk =
a∗l − al − γ(a∗k − ak)

−fmlk
, (55)

and a similar equation can be written for a∗l −al−γ(a∗k−
ak) ≥ 0. The lower bound δlk is a function of γ which
must be chosen so that δlk is as high as possible. To find
such γ it is necessary to solve the following optimization
problem: Find γ to

maximize
a∗l − al − γ(a∗k − ak)

−fmlk
(56)

subject to tli − γtki − fmlk|tn+1i| < 0, (57)

i = 0, 1, · · · , n+ 1.

This problem describes the case a∗l −al−γ(a∗k−ak) < 0.
The other case is almost identical with fplk replacing
fmlk. It is obvious that any algorithm that solves the
above also solves the fplk case. The objective func-
tion (56) is nonlinear (fmlk is a function of γ) while
the constraints (57) are linear. This type of optimiza-
tion problem is usually solved by the so-called gradient-
projection method and is not very difficult. To see how the
algorithm works let us rewrite (55) by using fmlk from
(54)

δlk =
a∗l − al − γ(a∗k − ak)

t′li0 − γt′ki0

, (58)

where i0 is the maximal index for a given γ. The first
derivative of (58) is equal to

d δlk
d γ

=
(a∗l − al)t′ki0

− (a∗k − ak)t′li0
(t′li0 − γt′ki0

)2
. (59)

It is clear that if γ is replaced by γ + ∆γ so that

sign(
d δlk
d γ

)∆γ > 0, (60)

the lower bound δlk will increase provided that the max-
imal index i0 does not change. In other words, ∆γ must
be small enough. Note that the sign of the derivative
(59) changes only when i0 is no longer the maximal in-
dex as defined in (54). The maximal ∆γ which does not
change i0 is limited by (54) when the following equality
is reached for some i

t′li0 − (γ + ∆γ)t′ki0 = t′li − (γ + ∆γ)t′ki . (61)

This gives the limit for ∆γ

∆γ = min
0≤i≤n+1

i �=i0

(
t′li0 − t′li
t′ki0
− t′ki

− γ
)
,

sign(
d δlk
d γ

)∆γ > 0,

(62)

where only indices i giving ∆γ that satisfies (60) are used
in the search for minimum. It is useful to denote the min-
imal index i = i1 and rewrite (62) as

∆γ =
t′li0 − t′li1
t′ki0
− t′ki1

− γ. (63)

The algorithm that solves our optimization problem
can now be described. The steps are as follows:

1. Start with γ = 0 and find the maximal index i0 from
(54) for l. This index is because of γ = 0 identical
to the level 1 index given by (42) (if a∗l − al ≥ 0 use
(45)). Compute the level 1 lower bounds δl and δk at
index i0. If δl ≥ δk, or in other words, if

a∗l − al

t′li0
≥ a

∗
k − ak

t′ki0

, (64)

go to step 2 else exchange equations l and k (multi-
ply equation l by γ and subtract it from k) then go to
step 2. This exchange ensures that γ is finite.

2. Compute the derivative (59) and keep its sign.
3. Use (62) to compute ∆γ and the minimal index i1.

Stop if no ∆γ is found or if ∆γ = 0.
4. Replace γ by the new value

γ ← γ + ∆γ , (65)

and compute δlk using (58).
5. Replace index i0 by the new value

i0 ← i1. (66)

6. Compute the new derivative (59) and compare its
sign with the previous one. If they are the same, re-
turn to step 3 for the next iteration, or else stop. Note
that both i = i0 and i = i1 must now be excluded in
the search for the minimum in (62) since we would
always get ∆γ = 0 otherwise.



The algorithm is robust and typically needs 2 or 3 iter-
ations before the optimal γ and δlk are found. The level 2
lower bound δlk that is computed by the algorithm is valid
for a given al and ak. Note that the algorithm automati-
cally takes care of the sign of a∗l − al − γ(a∗k − ak) (or
a∗k − ak − γ(a∗l − al)) if the exchange was done in step
1). This means that it is no longer necessary to treat cases
fmlk and fplk separately.

It is, however, necessary to check all possible combi-
nations of integers al and ak to get the level 2 lower bound
over all possible integer coefficients. In other words, we
must find

min
al,ak

δlk. (67)

This is not difficult because the function (58) for δlk is
convex and all local optima are global. Still, it is neces-
sary to compute δlk for all pairs of al−, al+ and ak−, ak+

and then check if adding +1 or −1 to either possibly re-
duces δlk. A new optimal γ must be computed each time.

7 Experimental results

The level 2 bound δ was implemented in a program for the
optimal finite wordlength FIR digital filter design. The
program is based on the branch-and-bound algorithm.

Sixteen filters with five different sets of frequency-
domain specifications, denoted A through E, were used
for testing. The frequency specifications are identical to
those that were used in [2]. A is a low-pass filter with
W (x) = 1 in passband and stopband. B is the same, ex-
cept the stopband has W (x) = 10. C is a bandstop filter
with W (x) = 1 in all bands, while D has W (x) = 10
in the stopband. E is a low-pass filter similar to A whose
passband and stopband do not include x = 0 and x = π.
We denote by A15/5 the filter design problem for spec-
ification A, length 15 (8 independent coefficients), and
b = 5 bits (sign included); and similarly for A25/5,
B15/7, and so on.

Table 1 shows a summary of the results, comparing
the number of branch-and-bound subproblems that must
be solved when lower bound δ is used and when it is not
used. The results show a significant improvement which
averages at about 2.5.
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