
Informatica27 (2003) 105–114 105

An Algorithm for Computing the Optimal Cycle Time of a Printed Circuit
Board Assembly Line

Dušan M. Kodek and Marjan Krisper
University of Ljubljana, Faculty of Computer and Information Science
Tržaška 25, 1000 Ljubljana, Slovenia
E-mail: duke@fri.uni-lj.si

Keywords: combinatorial optimization, integer programming, minimax approximation

Received:December 24, 2002

We consider the problem of optimal allocation of components to a printed circuit board (PCB) assembly
line which has several nonidentical placement machines in series. The objective is to achieve the highest
production throughput by minimizing the cycle time of the assembly line. This problem can be formulated
as a minimax approximation integer programming model that belongs to the family of scheduling prob-
lems. The difficulty lies in the fact that this model is proven to beNP-complete. All known algorithms that
solve theNP-complete problems are exponential and work only if the number of variables is reasonably
small. This particular problem, however, has properties that allow the development of a very efficient type
of branch-and-bound based optimal algorithm that works for problems with a practically useful number of
variables.

1 Introduction

The problem of optimal allocation of components to place-
ment machines in a printed circuit board (PCB) assembly
line is NP-complete and is often considered too difficult
to solve in practice. This opinion is supported by the ex-
perience with the general integer programming programs
that are typically very slow and do not produce solutions
in a reasonable time. It is therefore not surprising to see
many attempts of replacing the optimal solution with a
near-optimal one. The reasoning goes as follows: A near-
optimal solution is often good enough and is usually ob-
tained in a significantly shorter time than the optimal solu-
tion. Although this is true in many cases, it does not hold
always. The difficulty with the near-optimal methods is
that they, as a rule, do not give an estimate of closeness to
the optimal solution. This means that a significantly bet-
ter optimal solution, about which the user knows nothing,
may exist. Given a choice, the user would probably always
choose the optimal solution provided that it can be obtained
in a reasonable time.

This paper challenges the opinion that the optimal so-
lution is too difficult to compute. An algorithm that takes
advantage of the special properties of the minimax approx-
imation optimal allocation problem is developed. This op-
timal algorithm is much faster than the general integer pro-
gramming approach mentioned above. The algorithm pro-
duces, in most practical cases, the optimal solution in a
time that is similar to the time needed for near-optimal
methods. Because of its exponential nature, it will of
course fail in the cases when the number of variables is
large. But it should be noted that the algorithm practically
always produces one or more suboptimal solutions which

can be used in such cases. These suboptimal solutions are
comparable to those obtained by the near-optimal methods
like local search, genetic algorithms, or knowledge based
systems. Or in other words, the user can only gain if the
optimal algorithm is used.

Let us start with an investigation of the PCB assembly
line problem. The cycle timeT of a PCB assembly line is
defined as the maximum time allowed for each machine (or
station) in the assembly line to complete its assembly tasks
on the board. This time becomes important when the quan-
tity of PCBs is large: A minor reduction in the cycle time
can result in a significant cost and time savings. Moreover,
a PCB line in the problem has several non-identical place-
ment machines. As a board contains hundreds of surface
mounted components in different shapes, sizes, and pat-
terns, different placement machines in the line are installed
to cope with different components. The line efficiency de-
pends on the combination of the machine types. Due to the
costly placement machines, the optimization of the assem-
bly process can significantly increase the competitiveness
of the production.

Many factors affect the efficiency of the PCB assem-
bly, namely customer orders [1], component allocation [2],
PCB grouping [3], component sequence [4], and feeder ar-
rangement [5]. Different algorithms have been developed
to optimize different factors in PCB assembly [6], [7]). The
genetic algorithm technique is one of the heuristic methods
that has been used recently to find a near-optimal solution
[8].

106 Informatica27 (2003) 105–114 D.M. Kodek et al.

Placement timestij for component typej SetupMachineMi 1 2 3 4 5 6 7 timesi

1 0.3 0.7 0.7 0.5 ∞ ∞ ∞ 11.0
2 0.7 1.2 1.5 1.6 1.5 1.5 2.1 14.7
3 2.3 3.8 3.5 3.5 2.7 3.3 4.3 14.7

Number of typej
components per board 324 37 12 5 7 5 4

Table 1: An example of a PCB assembly line with 3 different placement machines and 7 different component types per
board. The placemet timestij for different components and machines and the setup timessi are in seconds.

2 Formulation of the problem

When a board is assembled on a production line the
board’s components are grouped and allocated to appropri-
ate placement machines in order to achieve a high output
of the line. The next machine can begin its tasks only af-
ter the previous machine has completed the placement of
all components that were allocated to it. After the board
passes through all the machines, the component placement
process is completed. It is clear that the slowest task dic-
tates the performance of the assembly line.

There are two important differences between the tradi-
tional assembly line problem and this PCB assembly line
problem. First, unlike the traditional assembly line, the
precedence of operations in the PCB assembly is not im-
portant and can be ignored. The second difference con-
cerns the assembly times for the same component on dif-
ferent machines. Due to various types and configurations
of the placement machines, different machines have differ-
ent times for placement of the same kind of component.
The components are usually of a surface mounted type, al-
though this is not important here. An example from Table 1
is used to make the problem easier to understand. This ex-
ample is the same as the one used in [8] and will allow the
comparison of our optimal algorithm to the near-optimal
one.

A PCB assembly line with three different placement ma-
chinesM1, M2, M3 and a board with seven types of com-
ponents is used in the example. The placemet timestij for
different components and machines are given in the Table
1. If a machine cannot handle a particular type of compo-
nent, its placement time is assigned to be infinite (∞). The
infinity is used here for simplicity of notation only — it is
replaced by a large positive number for computation. In ad-
dition to the time that is needed to place a component there
is also a setup timesi for each of the machinesMi. The
machine needs this time every time a new board arrives for
its positioning and placement preparation. Finally, a total
number of each type of a component per boardcj is also
given.

Obviously, there are many possible ways of allocating
the componentsj to the placement machinesMi. Each of
them leads to its own cycle timeT . The question is how
to allocate the components in such a way that the assembly

line has the best performance. The PCB assembly line cy-
cle timeT is formally defined as the maximum time needed
by one of the machinesMi, i = 1, 2, · · · ,m, to complete
the placement of the components allocated to it. Clearly,
the time interval between two finished boards coming out
of the assembly line is equal toT which means that the
number of boards produced in a given time span is propor-
tional to1/T . This number can be increased by allocating
the components to the machines in such way thatT is re-
duced. A mathematical model that describes this situation
can now be given.

Suppose that there arem non-identical placement ma-
chinesMi in a PCB assembly line and that a board withn
types of components is to be assembled on this line. It takes
tij units of time to place the component of typej on a ma-
chineMi. In addition, each machineMi has a setup time
si. There are exactlycj components of typej per board.
The component allocation problem can be formulated as

Topt = min
xij

max
i=1,2,...,m


si +

n∑

j=1

tijxij


 , (1)

subject to

m∑

i=1

xij = cj , j = 1, 2, . . . , n , (2)

xij ≥ 0 and integer. (3)

The solution of this problem is the optimal cycle timeTopt

and the optimal allocation variablesx(opt)
ij . The variable

xij gives the number of components of typej that are allo-
cated to machineMi. Constraints (2) ensure that all of the
components will be allocated. The components are indivis-
ible and (3) ensures thatxij are positive integers. Note that
tij andsi are by definition positive2.

3 Complexity of the problem

The problem (1)–(3) is a combination of assignment and
flowshop scheduling problems [9]. It isNP-complete for

2The timestij andsi can be arbitrary positive real numbers. It is easy
to reformulate the problem and changetij andsi into arbitrary positive
integers. This does not change the complexity of the problem.

AN ALGORITHM FOR COMPUTING THE OPTIMAL . . . Informatica27 (2003) 105–114 107

n ≥ 2. Proving theNP-completness is no too difficult.
First, it is trivial to show that the problem is inP. Sec-
ond, it is possible to show that the well known PARTITION
problem can be polynomially transformed into (1)–(3) [10].
Since PARTITION isNP-complete, so is our problem.

A typical approach to solving this problem is to treat it as
a general mixed integer linear programming problem. The
minimax problem (1)–(3) is reformulated as

min
xij

Topt ,

Topt − si −
n∑

j=1

tijxij ≥ 0, i = 1, 2, . . . , m,

m∑

i=1

xij = cj , j = 1, 2, . . . , n,

xij ≥ 0 and integer.

(4)

All algorithms that are capable of solving this problem op-
timally work by starting with the noninteger problem where
the variablesxij can be any positive real number. Ad-
ditional constraints are then gradually introduced into the
problem and these constraints eventually force the vari-
ablesxij to integer values. Many instances of suitably re-
formulated subproblems of the form (4) must be solved be-
fore the optimal solution is found.

An advantage of the formulation (4) is that general
mixed integer programming programs can be used to solve
it. Unfortunately, this advantage occurs at the expense of
the computation time. The general programs use the sim-
plex algorithm to solve the subproblems. The simplex al-
gorithm is very general and slow since it does not use any
of the special properties of the minimax problem. All these
properties are lost if the original problem (1)–(3) is con-
verted into the general problem.

The fact that the general problem (4) is so slow has led
to the development of suboptimal heuristic algorithms that
search for a near-optimal solution. These algorithms are
faster and often good enough. The difficulty is that a signif-
icantly better optimal solution may exist which these algo-
rithms do not find. It is the purpose of this paper to develop
an optimal algorithm that does not use the generalized for-
mulation (4). The algorithm takes advantage of the special
properties of the minimax problem (1)–(3). It avoids using
the simplex algorithm completely which leads to a much
faster solution.

4 The lower bound theorem

The basic idea of our algorithm is to use a lower bound for
Topt as a tool that leads to the solution. This lower bound
must be computed for each of the subproblems that appear
within the branch-and-bound process. It must take into ac-
count the fact that some of the subproblem’s variablesxij

are known integers. To derive it, let us assume that the sub-
problems’s variablesxij , j = 1, 2, . . . , k − 1, are known
integers for alli. In addition, some, but not all, of the vari-
ablesxik may also be known integers. LetIk be the set of

indicesi that correspond to the known integersxik. The
subproblem’s variables can be formally described as

xij =





xI
ij , j = 1, . . . , k − 1, i = 1, . . . ,m

xI
ij , j = k, i ∈ Ik

xij , j = k, i 6∈ Ik

xij , j = k + 1, . . . , n, i = 1, . . . ,m,

(5)

wherek can be any of the indices1, 2, . . . , n. NotationxI
ij

is used to describe the variables that are already known in-
tegers. The remaining variablesxij are not yet known. The
number of indices in the setIk lies in the range0 to m− 2.
If there werem − 1 known integersxI

ik the constraint (2)
gives the remaining variable which contradicts the assump-
tion that not all of the variablesxik are known. The index
k changes tok + 1 when allxik are known integers.

Definition (5) assumes that a certain rule is used to in-
troduce the constraints which force the variablesxij to in-
teger values. This rule is simple: For every indexk it is
necessary to constrainxik to known integersxI

ik for all
i, i = 1, 2, . . . , m, beforek can change. The rule follows
from the structure of constraints given by (2) and is needed
to derive the lower bound theorem. There is no problem
with this rule because the branch-and-bound method, on
which our algorithm is based, allows complete freedom of
choosing the variablexij that is to be constrained next. The
indicesk can be selected in any order. A simple ascending
orderk = 1, 2, . . . , n, is used in (5). This also applies to
the case when the problem is first reordered along the in-
dicesj in a way that gives the fastest rate of lower bound
increase. Such a reordering is used in our algorithm.

To simplify the notation, let us first use the known inte-
gersxI

ij and redefinesi into s′i as

s′i =





si +
k∑

j=1

tijx
I
ij , i ∈ Ik

si +
k−1∑

j=1

tijx
I
ij , i 6∈ Ik .

(6)

Similarly, the known integersxI
ik (if any) are used to rede-

fine ck into c′k as

c′k = ck −
∑

i∈Ik

xI
ik . (7)

The lower bound onTopt over all possible not yet known
variablesxij is the most important part of our algorithm.
It is developed along the lines used in a related integer
polynomial minimax approximation problem that appears
in a digital filter design [11], [12] and is given in the
following theorem.

Theorem 1 Let Topt be the minimum cycle time corre-
sponding to the optimal solution of the problem (1)–(3) in
which some of the variables are known integers defined by

108 Informatica27 (2003) 105–114 D.M. Kodek et al.

(5). ThenTopt is bounded by

Topt ≥ max
j=k+1,...,n




cj +
m∑

i=1

s′i
tij

+ pj + qj

m∑

i=1

1
tij




(8)

where

pj =
n∑

r=k+1
r 6=j

cr min
i=1,2,...,m

(
tir
tij

)
,

qj = c′k min
i 6∈Ik

(
tik
tij

)
, j = k + 1, . . . , n .

(9)

Proof: Let h be a number that satisfies

h ≥





si +
k∑

j=1

tijx
I
ij +

n∑

j=k+1

tijxij , i ∈ Ik

si +
k−1∑

j=1

tijx
I
ij +

n∑

j=k

tijxij , i 6∈ Ik .

(10)

Note thath is a lower bound forTopt if we can prove that
(10) holds over all possible not yet known valuesxij . Us-
ing (6) eq. (10) is simplified

h ≥





s′i +
n∑

j=k+1

tijxij , i ∈ Ik

s′i +
n∑

j=k

tijxij , i 6∈ Ik .

(11)

It follows from (11) that variablesxij can be expressed as

xij ≤ h

tij
− s′i

tij
−

n∑

r=k+1
r 6=j

tir
tij

xir, i ∈ Ik, j = k+1,..., n,

xij ≤ h

tij
− s′i

tij
−

n∑

r=k
r 6=j

tir
tij

xir, i 6∈ Ik, j = k,..., n.

(12)
Adding allxij by indexi and using (2) and (7) gives

cj ≤
m∑

i=1

h

tij
−

m∑

i=1

s′i
tij

−
n∑

r=k+1
r 6=j

m∑

i=1

tir
tij

xir −
∑

i 6∈Ik

tik
tij

xik,

j = k + 1, . . . , n ,
(13)

and the lower bound forh can now be written as

h ≥

cj +
m∑

i=1

s′i
tij

+
n∑

r=k+1
r 6=j

m∑

i=1

tir
tij

xir +
∑

i6∈Ik

tik
tij

xik

m∑

i=1

1
tij

,

j = k + 1, . . . , n .
(14)

All the terms in (14) are positive. This means thath is a
lower bound over all variables if the lowest possible values
of the terms containing variablesxir andxik are used. The
variablesxir are subject to

m∑

i=1

xir = cr , r = k + 1, . . . , n . (15)

It is quite easy to see that the sum containingxir is bounded
by

n∑

r=k+1
r 6=j

m∑

i=1

tir
tij

xir ≥
n∑

r=k+1
r 6=j

cr min
i=1,2,...,m

(
tir
tij

)
=pj ,

j = k + 1, . . . , n,

(16)

since it is obvious that a minimum is obtained ifxir is given
the valuecr for indexi that corresponds to the lowest of the
factorstir/tij while all otherxir are set to zero. Similarly,
the variablesxik are subject to

∑

i 6∈Ik

xik = c′k , (17)

and the sum containingxik is bounded by

∑

i 6∈Ik

tik
tij

xik ≥ c′k min
i 6∈Ik

(
tik
tij

)
= qj ,

j = k + 1, . . . , n .

(18)

Equations (16) and (18) are used in the definitions (9) and
this completes the proof. 2

Note that the Theorem 2 does not include the lower
bound for the casek = n. The following trivial lower
bound, which holds for allk, can be used in this case

Topt ≥ max
i/∈Ik

(s′i + tikxik) , k = 1, . . . , n. (19)

Note also that indexj = k was not used in the derivation
of the Theorem 1. The equivalent of (13) forj = k is

c′k ≤
∑

i 6∈Ik

h

tik
−

∑

i 6∈Ik

s′i
tik

−
n∑

r=k+1

∑

i 6∈Ik

tir
tik

xir . (20)

WhenIk is not empty allxir in the sum overi 6∈ Ik can
be zero and still satisfy (15). The lowest possible sum con-
taining xir is obviously zero in this case. This gives an
additional lower bound

Topt ≥
c′k +

∑

i 6∈Ik

s′i
tik

∑

i 6∈Ik

1
tik

. (21)

This lower bound is almost always much lower than the
one given by (8). It can included in the algorithm to bring a
small decrease in computing time which is on the order of
1%.

AN ALGORITHM FOR COMPUTING THE OPTIMAL . . . Informatica27 (2003) 105–114 109

By choosingk = 0 one can use (8)–(9) to compute the
lower bound over all possible values of variablesxij . Ap-
plying this to the example from the Table 1 givesTopt ≥
96.084. But there is more — the theorem plays a central
role in our algorithm because it eliminates the need to use
the simplex algorithm for solving the subproblems within
the branch-and-bound process.

5 Application of the lower bound
theorem

The usefulness of the Theorem 1 is based on the following
observation: The problem of finding the all-integer solution
that gives the lowest cycle timeTopt can be replaced by
the problem of finding the all-integer solution that has the
lowest lower bound forTopt . Both approaches obviously
lead to the same solution sinceTopt equals its lower bound
when all variablesxij are integers.

This observation, however, is not enough. A new con-
straint must be introduced on one of the variablesxik, i 6∈
Ik, at each branch-and-bound iteration. This constraint
cannot be made on the basis of the Theorem 1 alone and
requires additional elaboration.

To see how the lower bound depends onxik let us define
the parametersTL(j, k) as

TL(j, k) =

cj +
m∑

i=1

s′i
tij

+ pj +
∑

i 6∈Ik

tik
tij

xik

m∑

i=1

1
tij

, (22)

wherej = k+1, . . . , n, andk = 1, . . . , n−1. TheTL(j, k)
are simply (14) rewritten in a slightly different way. The
Theorem 1 lower bound (8) in which the variablesxik are
left is now equal to

Topt ≥ max
j=k+1,...,n

TL(j, k) . (23)

This lower bound does not include the casek = n. This
is easily corrected if (19) is included. To simplify notation
we first define parametersTI(i, k) as

TI(i, k) = s′i + tikxik, k = 1, . . . , n, (24)

and define the new lower boundTopt ≥ TLB (k)

TLB (k) = max
(

max
i/∈Ik

TI(i, k), max
j=k+1,...,n

TL(j, k)
)

.

(25)
The TLB (k) are defined fork = 1, . . . , n (where
TL(j, n) = 0). They includeTI(i, k) for all k even if it
is strictly needed only fork = n. There is a good reason
for that because theTI lower bound sometimes exceeds
theTL lower bound. This can occur when the values oftij
differ by several orders of magnitude as is the case in the
example from Table 1 where a large positivetij is used in-
stead of∞. Although the algorithm works ifTI is used for

k = n only, experiments show that it is usually faster if it
is used for allk.

The lower boundTLB (k) (25) is the basis of our algo-
rithm. It is a linear function of the variablesxik, i 6∈ Ik,
and, as mentioned before, a new constraint must be intro-
duced on one of them at each branch-and- bound iteration.

Let ic, ic 6∈ Ik, be the index of the variablexick that
is selected for constraining. Selection of the indexic is
simple — any of the indicesi, i 6∈ Ik, can be used asic.
It is more difficult to find the valuex∗ick that will be used
in the branch-and-bound iteration to constrain the selected
variable to integersxI

ick which are the nearest lower and
upper neighbours ofx∗ick. Thex∗ick must be a number that
gives the lowest possible lower boundTLB (k) over all pos-
sible values of the not yet known variablesxik, i /∈ Ik, and
xij , i = 1, . . . ,m, j = k +1, . . . , n. Or in other words, the
x∗ick must be at the global minimum ofTLB (k).

It is important to understand whyx∗ick must be at the
global minimum ofTLB (k). It is because our algorithm
uses the property thatTLB (k) is a linear function of the
variablesxik and is therefore also convex. The convex
property is crucial for the success of our algorithm since
it ensures that every local optimum is also global. The al-
gorithm uses this property by stopping the search along a
variable in the branch-and-bound process whenTLB (k) ex-
ceeds the current best solutionTu. This, however, can be
used only ifx∗ick is such thatTLB (k) does not decrease
when an arbitrary integer is added tox∗ick. Thex∗ick at the
global minimum certainly satisfies this condition.

A great advantage of using the lower bound comes from
the fact that the lower boundTLB (k) in (25) depends only
on the variablesxik, i 6∈ Ik, and is independent of the re-
maining variablesxij , i = 1, . . . ,m, j = k+1, . . . , n. This
means that the number of variables is significantly reduced
in comparison with the general approach (4). Solution of
the minimax problem

min
xik
i 6∈Ik

max
(
max
i/∈Ik

TI(i, k), max
j=k+1,...,n

TL(j, k)
)

, (26)

∑

i 6∈Ik

xik = c′k , xik ≥ 0 , (27)

gives the nonnegative numbersx∗ik that give the global min-
imum ofTLB (k) for a givenk.

A complication arises whenk changes tok + 1 because
the solution of (26)–(27) fork + 1 depends not only on
x∗ik+1 but also onx∗ik (throughs′i). The problem is thatx∗ik
are not at the global minimum ofTLB (k+1). It is possible
that the minimum of (26) fork+1 decreases if differentx∗ik
are used. An error can occur if this is ignored because the
algorithm stops the search along a variable if the minimum
is > Tu when in fact a lower value forTLB (k + 1) exists.
It is obvious that this error cannot occur if the minimum
TLB (k + 1) ≤ TLB (k).

The following corrective procedure is used in the algo-
rithm when the minimumTLB (k+1) > minimumTLB (k).
It consists of adding +1 and/or -1 to thex∗ick that was used

110 Informatica27 (2003) 105–114 D.M. Kodek et al.

as the last constraint. Using the newx∗ick we simply re-
computeTLB (k) and solve again (26)–(27) fork + 1. If
max(TLB (k), TLB (k + 1)) decreases we continue in that
direction until it stops decreasing or until (27) is violated
(TLB (k) increases when the originalx∗ick changes). The
correctedx∗ick is a solution of

min
xick, xik+1

max (TLB (k), TLB (k + 1)) . (28)

It is used to replace the original and this eliminates the pos-
sibility of error. Note that it is not necessary to correct
the remaining variablesxI

ik even if they were not derived
from the global minimum ofTLB (k + 1). This is because
the branch-and-bound process ensures that all values ofxI

ik

will be tried as long as theirTLB (k) is lower thanTu. Ad-
ditional details about the implementation of (28) are given
in step 6 of the algorithm in section 7.

The minimax problem (26)–(27) must be solved many
times within the branch-and-bound process and it is ex-
tremely important to have an efficient method that gives
its solution. Most of the computing time in our algorithm
is spent on solving this problem. The method that is used
to solve it is worth a detailed description.

6 Solving the discrete linear
minimax problem

The number of variablesxik in (26)–(27) is equal to the
number of indicesi, i /∈ Ik. Let m′, 1 ≤ m′ ≤ m, be this
number and letR(i), i = 1, . . . ,m′, be the indices not in
Ik. Equation (26) containsm′ termsTI andn − k terms
TL. The total number of termsn′ is equal to

n′ = n + m′ − k , m′ ≤ n′ ≤ n + m′ . (29)

It helps to rewrite (26) using a new indexv

min
xR(i)k

max
(

max
v=1,...,m′

TI(R(v), k),

max
v=m′+1,...,n′

TL(v′, k)
)

,
(30)

wherev′ = v + k −m′. Because of the sum constraint in
(27) there are onlym′−1 independent variables; them′-th
variable can be expressed as

xR(m′)k = c′k −
m′−1∑

i=1

xR(i)k. (31)

The minimax problem (26)–(27) can now be reformulated
into a more general form

min
xR(i)k

max
v=1,...,n′


fv +

m′−1∑

i=1

ΦvixR(i)k


 , (32)

m′−1∑

i=1

xR(i)k ≤ c′k , xR(i)k ≥ 0 . (33)

Definitions of termsfv and Φvi are somewhat tedious
though they follow directly from (22) and (24)

fv=





s′R(v) , v = 1, . . . ,m′ − 1
s′R(v) + tR(v)kc′k , v = m′

cv′ +
m∑

r=1

s′r
trv′

+ pv′ +
tR(m′)k

tR(m′)v′
c′k

m∑
r=1

1
trv′

, v > m′

(34)

Φvi=





tR(i)k if i = v, 0 if i 6= v, v = 1,..., m′− 1
−tR(m′)k , i = 1,..., m′− 1, v = m′
tR(i)k

tR(i)v′
− tR(m′)k

tR(m′)v′
m∑

r=1

1
trv′

, i = 1,...,m′−1, v > m′

(35)
for v = 1, . . . , n′ andi = 1, . . . , m′ − 1.

The process of solving (32)–(33) is simplified greatly
by the theorem that gives the necessary and sufficient
conditions for the variablesx∗R(i)k, i = 1, . . . , m′ − 1, that
minimize (32). The general version of the theorem is given
in [15]. It is repeated here in the form that applies to our
problem.

Theorem 2 The variablesx∗R(i)k, i = 1, . . . , m′ − 1, are
the optimal solution of the minimax problem (32)–(33) if
and only if the following holds

min
zi

max
v∈Vmax (x∗)

m′−1∑

i=1

Φvi(zi − x∗R(i)k) = 0 , (36)

over all numberszi, i = 1, . . . ,m′ − 1, that satisfy

m′−1∑

i=1

zi ≤ c′k , zi ≥ 0 . (37)

The setVmax (x∗) contains those of the indicesv, v =
1, . . . , n′, at which the maximum is obtained. That is

max
v=1,...,n′

(fv +
m′−1∑

i=1

Φvix
∗
R(i)k) =

fv +
m′−1∑

i=1

Φvix
∗
R(i)k , v ∈ Vmax (x∗) .

(38)

Only the indicesv, v ∈ Vmax (x∗), that give the extremal
values of the function (38) are used in the Theorem 2. The
theorem says thatx∗R(i)k is the optimal solution if there are
no numberszi for which (36) is lower than zero. To show
how this can be used to solve (32)–(33) let us assume that
we have a set of numbersx∗R(i)k and would like to check
if they are optimal. Depending onVmax (x∗) andΦvi there
are two mutually exclusive cases:

AN ALGORITHM FOR COMPUTING THE OPTIMAL . . . Informatica27 (2003) 105–114 111

1. The setVmax (x∗) contains at least two indicesv1 and
v2 for which the following holds

Φv1iΦv2i ≤ 0 , i = 1, . . . , m′ − 1 . (39)

It is easy to see that the numberszi that give (36) lower
than zero cannot exist. This is because of the opposite
signs ofΦv1i andΦv2i for all i. Any set of numberszi

that is different fromx∗R(i)k makes (36) greater than
zero for at leastv = v1 or v = v2. Thus, according to
the Theorem 2,x∗R(i)k are optimal.

2. The setVmax (x∗) does not contain two indicesv1

and v2 for which (39) holds (this is always true if
Vmax (x∗) contains only one indexv). This means that
there exists a set of indicesIp, containing at least one
indexi, for which

Φv1iΦv2i > 0, i∈ Ip, v1, v2 ∈ Vmax (x∗), (40)

holds for any pair of indicesv from Vmax (x∗). Or
in other words, for eachi ∈ Ip the Φvi are nonzero
and have the same signs for allv ∈ Vmax (x∗). Let us
assume that there are numberszi, i ∈ Ip, that satisfy
(37) and give
∑

i∈Ip

Φvizi <
∑

i∈Ip

Φvix
∗
R(i)k, v ∈ Vmax (x∗). (41)

These numbers, together withzi = xR(i)k for i /∈ Ip,
obviously make (36) lower than zero. The numbers
x∗R(i)k are therefore not optimal if suchzi exist. They
exist almost always — the only exception occurs if the
following holds

∑

i∈Ip

Φvix
∗
R(i)k = min

zi

∑

i∈Ip

Φvizi , (42)

for somev, v ∈ Vmax (x∗). It is clear that (41) cannot
be satisfied in this case because thex∗R(i)k sum is al-
ready the lowest possible. The lowest possible sum in
(42) is easy to compute by usingzi = 0 for Φvi > 0
andzi = c′k for the most negative ofΦvi < 0. This
means that it is also easy to check ifx∗R(i)k are opti-
mal.

Using (39)–(42) it becomes straightforward to solve (32)–
(33). A starting solution forx∗R(i)k is selected and checked
as described above. If it is found optimal, we have a solu-
tion. If not, one of the variablesx∗R(i1)k

, i1 ∈ Ip, is tried; if
it can change towards zero (ifΦvi1 > 0) or towardsc′k (if
Φvi1 < 0) without violating (33), it leads to an improved
solution. It is ignored otherwise and a new variable is tried.
The setIp always contains at least one indexi that leads to
an improved solution.

The new value ofx∗R(i1)k
is computed by trying all

v1, v1 /∈ Vmax (x∗), and solving

f ′v1
+ Φv1i1x

∗
R(i1)k

=f ′v + Φvi1x
∗
R(i1)k

, v∈Vmax (x∗),
(43)

wheref ′v are defined as

f ′v = fv +
m′−1∑

i=1
i 6=i1

Φvix
∗
R(i)k, v = 1, . . . , n′. (44)

Each of the equations (43) gives a possible new value for
x∗R(i1)k

. The one that is the least different from the current
value must be used because the setVmax (x∗) changes at
that value. The newx∗R(i1)k

must of course also satisfy
(33). Replacingx∗R(i1)k

with the new value gives a new
solutionx∗R(i)k, i = 1, . . . , m′ − 1, for which the whole
process is repeated until the optimal solution is found.

Selecting a good starting solution is important because
it reduces the number of iterations. Our algorithm uses a
solution that is found by choosingx∗R(i)k = c′k (the re-
mainingx∗R(i)k are zero) fori = 1, . . . , m′, and comput-
ing the lower boundTLB (k) for each of them. The choice
that gives the lowestTLB (k) is the starting solution. This
starting solution is often optimal; when it is not, it usually
takes only one or two iterations to find the optimum. Note
that the search for the optimalx∗R(i)k is not necessary if the
startingTLB (k) is lower than the lower bound (21). In such
cases the algorithm simply uses the starting solution.

Having the optimal variablesx∗R(i)k, i = 1, . . . ,m′ − 1,
it remains to select the one that will be used as the new
constraint. This is done by computing the products

tR(i)kx∗R(i)k, i = 1, . . . , m′ , (45)

where (31) is used to compute the remaining variable
x∗R(m′)k. The indexR(i) that gives the highest product is
selected asic. The reasons for this choice is obvious: The
highest of products (45) is most likely to give the largest
increase of the lower boundTLB (k).

7 The algorithm

The algorithm is based on the well known branch-and-
bound method which is described in detail in many text-
books (see, for example, [13] or [14]). We assume that the
reader is familiar with this method and continue with the
description of the algorithm.

An important part of the branch-and-bound method is the
branch-and-bound tree. Each node in the tree represents a
subproblem that has some of the variables constrained to
integers. Information that is stored at each node must con-
tain the following: The node’s lower boundTLB (k), index
k, the size of setIk (it is equal tom − m′), the indicesi
in Ik, integer variablesxI

ij , j = 1, . . . , k, and the nonin-
teger variablex∗ick that will be used as the next constraint
(together with the indexic). The efficient organization of
the tree is important. It does not, however, influence the
results of the algorithm and will not be discussed here. The
algorithm is described in the following steps:

112 Informatica27 (2003) 105–114 D.M. Kodek et al.

1. Setk = 0 and use (8)–(9) to compute

TL(j, 0) =

cj +
m∑

i=1

s′i
tij

+ pj + qj

m∑

i=1

1
tij

, (46)

for j = 1, 2, . . . , m. Sort the lower boundsTL(j, 0) in
the ascending order. The problem parameterstij and
cj are reordered accordingly. It is assumed from here
on thatj = 1 corresponds to the lowestTL(j, 0), j =
2 to the next higherTL(j, 0), and so on. The reasons
for this reformulation of the problem are simple: We
wish to eliminate the indicesj that give the lowest
contribution to the total lower boundTLB (k) and at
the same time keep the indices that give the highest
contribution to the total lower bound. Several other
strategies for selecting the indicesj were tested; none
performed better over a large class of problems.

2. Set the current best solutionTu to ∞ (a large posi-
tive number). The corresponding variablesx

(u)
ij can

be set to anything — they will be replaced by one
of the solutions quickly. The indexu indicates that
Tu is an upper bound onTopt . The alternative is to
use some heuristic construction and compute a near-
optimal starting solutionTu. We found that this is not
really necessary because the algorithm quickly pro-
duces good near-optimal solutions.

3. Create the root node. This is done by makingk =
1, m′ = m (this makes the setIk empty), and solv-
ing the problem (32)–(33) as described by (36)–(45).
The resulting information is stored in the branch-and-
bound tree. Initialize the branching counterN to zero.

4. Choose the branching node by searching through the
nodes of the branch-and-bound tree. Go to step 8 if
no nodes withTLB (k) < Tu are found or if the tree is
empty. Add 1 to the branching counterN and choose
the branching node according to the following rule: If
N is odd, choose the node with the lowestTLB (k),
otherwise choose only among the nodes that contain
the largest number of integer variablesxI

ij and select
the one that has the lowestTLB (k). This branching
strategy is a combination of thelowest lower bound
anddepth firststrategies and is used to get many of
the near-optimal solutions as fast as possible. This is
especially important for large problems with several
hundred variablesxij .

5. Two subproblems are created from the branching node
by fixing the node’s variablex∗ick to integers

xI
ick = bx∗ickc , (47)

xI
ick = bx∗ickc+ 1 , (48)

wherebx∗ickc denotes the nearest lower integer tox∗ick.
The integersxI

ick must of course conform to (27). If

xI
ick in (48) does not, discard this subproblem (sub-

problem (47) is never discarded becausex∗ick satisfies
(33)). The number of noninteger variablesxik is re-
duced by 1

m′ ← m′ − 1 . (49)

If m′ ≥ 2 go to step 6. Otherwise there is only one
noninteger variablexik left. Its integer value is al-
ready determined because (27) gives

xI
ick + xI

ik = c′k, (50)

and xI
ik is easily computed. All variablesxik are

known integersxI
ik, i = 1, 2, . . . , m. Because of this

the indexk is incremented as described by the defini-
tion (5)

k ← k + 1 , (51)

The new setIk is made empty (m′ = m). If k ≤
n, go to step 6. Otherwise we have a case where all
of the subproblem’s variablesxij are integer. This is
a complete integer solutionand the cycle timeT is
simply computed as

T = max
i=1,2,...,m


si +

n∑

j=1

tijx
I
ij


 . (52)

If T < Tu, we have a new best solution; the current
Tu is set toT and the current best solutionx(u)

ij is re-
placed byxI

ij . The branch-and-bound tree is searched
and all nodes withTLB (k) ≥ Tu are removed from
the tree. Go to step 7.

6. Each of the non-discarded subproblems from step 5 is
solved. The already known integers are taken into ac-
count by computings′i andc′k using (6) and (7). Equa-
tions (34) and (35) are used next to computefv and
Φvi and the problem (32)–(33) is solved as described
by (36)–(45). The results areTLB (k) and x∗ick. If
TLB (k) ≥ Tu ignore this subproblem since it obvi-
ously cannot lead to a solution that is better than the
current bestTu. Otherwise ifm′ = 2 and k < n
do the corrective procedure (28) and replacex∗ick and
TLB (k) with the new values. The newly computed
TLB (k) will in most cases be greater than that of the
branching node. This growth is not monotone and it
is possible that the newTLB (k) is lower. Since the
lower bound cannot decrease we use the branching
node’sTLB (k) as the subproblem’sTLB (k) in such
cases. The subproblem information containingx∗ick

and TLB (k) is stored as a new node in the branch-
and-bound tree.

7. The subproblem in the branching node from step 4 is
modified (the root node is an exception — it is simply
removed from the branch-and-bound tree and we go
to step 4). The branching subproblem is modified by

AN ALGORITHM FOR COMPUTING THE OPTIMAL . . . Informatica27 (2003) 105–114 113

Allocationxij of components Assembly timeMachineMi 1 2 3 4 5 6 7 on machineMi

1 274 0 2 5 0 0 0 97.1
2 50 37 2 0 0 0 0 97.1
3 0 0 8 0 7 5 4 95.3

Number of typej
components per board 324 37 12 5 7 5 4

Table 2: One of the 10 equivalent optimal solutions of the cycle time problem given in example Table 1. The solution was
obtained with the algorithm described in this paper.

changing the integer variablexI
lk that was created last.

The modification is equal to

xI
lk ←

{
xI

lk − 1 if xI
lk was created by (47)

xI
lk + 1 if xI

lk was created by (48).
(53)

This of course means that each node in the branch-
and-bound tree must also contain information about
the integer variable that was created last and about
the way it was created (either by (47) or (48)). The
branching node is removed from the tree if the new
xI

lk < 0 or if xI
lk > c′k and we go to step 4. Oth-

erwise the modified subproblem is solved exactly as
in step 6. Note thatk andm′ remain unchanged and
that this subproblem can never be acomplete integer
solution. If TLB (k) < Tu the modified subproblem is
stored back into the tree, otherwise it is removed from
the tree. Go to step 4.

8. The current best solution is the optimal solution. The
optimal cycle timeTopt is equal toTu and the optimal

variablesx(opt)
ij are equal tox(u)

ij . Stop.

8 Experimental results and
conclusions

The algorithm was implemented in a program and tested
on many different cases. It is typical for the problem (1)–
(3) that there are often many equivalent optimal solutions.
One of the 10 optimal solutions of the example given in the
Table 1 is presented in the Table 2. It took less than 0.01
seconds of computer time (on a 2.4 GHz Pentium 4) to find
all 10 optimal solutions.

The computing time depends not only on the number of
variablesxij but also on the problem parameterstij and
especiallysi. The lower values ofsi obviously make the
search space smaller and reduce the computation time. Ex-
periments have shown that for the problem parameters sim-
ilar to those in the Table 1 all optimal solutions are typically
found within a minute of computing time if the number of
variablesxij is 60 or fewer. For example, the 3-machine
case from the Table 1 in which the number of different
component types per board is increased to 20, takes less

than a second to find all optimal solutions. This time in-
creases to almost 2 hours if an additional machine is added
(giving a problem with4×20 = 80 variablesxij). It should
be noted, however, that for this example a suboptimal solu-
tion that is within 0.1% of the optimum was found after less
than 0.1 second. This behaviour is typical for the branch-
and-bound based algorithms where a great amount of time
is often needed to prove the optimality of a solution that
was found early in the process.

The algorithm was also tested on problems with a much
larger number of variablesxij . Cases with up to 10 ma-
chines and up to 100 different component types per board
(giving up to 1000 variablesxij) were tried. Because of the
exponential nature of the algorithm the optimal solution is
not found and/or proved optimal in a reasonable computing
time for problems this large. But the algorithm is useful
even in such cases — the branching strategy ensures that
many good near-optimal solution are obtained. In addition,
the algorithm gives a global lower bound on the optimal
solution which allows the user to determine how close to
the best possible solution a near-optimal solution is. The
global lower bound on the optimal solution is the lowest of
the TLB (k) in the branch-and-bound tree and is obtained
in step 4 of the algorithm. It can be used to decide if a
near-optimal solution is sufficiently close to the optimum
and also if it is worth trying the longer computing time.

Acknowledgment

The authors would like to thank Prof. B. Vilfan for provid-
ing the formal proof ofNP-completeness for the problem
(1)–(3).

References

[1] P. Ji, Y.S. Wong, H.T. Loh, L.C. Lee, “SMT production
scheduling: A generalized transportation approach,”
International Journal of Production Research, vol.32
(10), pp.2323–2333, 1994.

[2] J.C Ammons, M. Carlyle, L. Cranmer, G. Depuy, K.
Ellis, L.F. Mcginnis, C.A. Tovey, H. Xu, “Compo-
nent allocation to balance workload in printed circuit

114 Informatica27 (2003) 105–114 D.M. Kodek et al.

card assembly system,”IIE Transactions, vol.29 (4),
pp.265–275, 1997.

[3] A. Schtub, O.Z. Maimon, “Role of similarity measures
in PCB grouping procedure,”International Journal of
Production Research, vol.30 (5), pp.973–983, 1992.

[4] J. Sohn, S. Park, “Efficient operation of a surface
mounting machine with a multihead turret,”Interna-
tional Journal of Production Research, vol.34 (4),
pp.1131–1143, 1996.

[5] Z. Ji, M.C. Leu, H. Wong, “Application of linear as-
signment model for planning of robotic printed cir-
cuit board assembly,”ASME Manufacturing Processes
and Material Challenges in Microelectronics Packag-
ing, vol.ADM-v131/EEP-v1, pp.35–41, 1991.

[6] M. Sadiq, T.L. Landers, G. Taylor, “A heuristic al-
gorithm for minimizing total production time for a
sequence of jobs on a surface mount placement ma-
chine,” International Journal of Production Research,
vol.31 (6), pp.1327–1341, 1993.

[7] Y.D. Kim, H.G. Lim, M.W. Park, “Search heuristics
for a flowshop scheduling problem in a printed circuit
board assembly process,”European Journal of Opera-
tional Research, vol.91 (1), pp.124–143, 1996.

[8] P. Ji, M.T. Sze, W.B. Lee, “A genetic algorithm of de-
termining cycle time for printed circuit board assem-
bly lines,” European Journal of Operational Research,
vol.128 (3), pp.175–184, 2001.

[9] P. Brucker, “Scheduling algorithms,” Second Ed.,
Springer, pp.274–307, 1998.

[10] B. Vilfan, “NP-completeness of a certain scheduling
problem,” (in Slovenian)Internal report,University of
Ljubljana, Faculty of Computer and Information Sci-
ence, June 2002.

[11] D.M. Kodek, “A theoretical limit for finite wordlength
FIR digital filters,”Proc. of the 1998 CISS Conference,
vol. II, pp.836–841, Princeton, March 20-22, 1998.

[12] D.M. Kodek, “An approximation error lower bound
for integer polynomial minimax approximation,”Elec-
trotechnical Review, vol.69 (5), pp.266–272, 2002.

[13] C.H. Papadimitrou and K. Steiglitz,“Combinatorial
optimization,”Prentice-Hall, pp.433–453, 1982.

[14] E. Horowitz, S. Sahni,“Fundamentals of computer
algorithms,” Computer Science Press, pp.370–421,
1978.

[15] V.F. Demyanov, V.N Malozemov,“Introduction to
minimax,” Dover, pp.113–115, 1990.

	Informatica_2003_1 15
	Informatica_2003_1 16
	Informatica_2003_1 17
	Informatica_2003_1 18
	Informatica_2003_1 19
	Informatica_2003_1 20
	Informatica_2003_1 21
	Informatica_2003_1 22
	Informatica_2003_1 23
	Informatica_2003_1 24

