Informatica27 (2003) 105-114 105

An Algorithm for Computing the Optimal Cycle Time of a Printed Circuit
Board Assembly Line

DuSan M. Kodek and Marjan Krisper

University of Ljubljana, Faculty of Computer and Information Science
TrzaSka 25, 1000 Ljubljana, Slovenia

E-mail: duke@fri.uni-lj.si

Keywords: combinatorial optimization, integer programming, minimax approximation

Received:December 24, 2002

We consider the problem of optimal allocation of components to a printed circuit board (PCB) assembly
line which has several nonidentical placement machines in series. The objective is to achieve the highest
production throughput by minimizing the cycle time of the assembly line. This problem can be formulated
as a minimax approximation integer programming model that belongs to the family of scheduling prob-
lems. The difficulty lies in the fact that this model is proven ta\#&complete. All known algorithms that

solve theNP-complete problems are exponential and work only if the number of variables is reasonably
small. This particular problem, however, has properties that allow the development of a very efficient type
of branch-and-bound based optimal algorithm that works for problems with a practically useful number of
variables.

1 Introduction can be used in such cases. These suboptimal solutions are
comparable to those obtained by the near-optimal methods
The problem of optimal allocation of components to placelike local search, genetic algorithms, or knowledge based
ment machines in a printed circuit board (PCB) assembgystems. Or in other words, the user can only gain if the
line is NP-complete and is often considered too difficultoptimal algorithm is used.
to solve in practice. This opinion is supported by the ex-
perience with the general integer programming programs
that are typically very slow and do not produce solutions Let us start with an investigation of the PCB assembly
in a reasonable time. It is therefore not surprising to sdne problem. The cycle tim& of a PCB assembly line is
many attempts of replacing the optimal solution with alefined as the maximum time allowed for each machine (or
near-optimal one. The reasoning goes as follows: A neastation) in the assembly line to complete its assembly tasks
optimal solution is often good enough and is usually oben the board. This time becomes important when the quan-
tained in a significantly shorter time than the optimal solutity of PCBs is large: A minor reduction in the cycle time
tion. Although this is true in many cases, it does not holdan result in a significant cost and time savings. Moreover,
always. The difficulty with the near-optimal methods isa PCB line in the problem has several non-identical place-
that they, as a rule, do not give an estimate of closenessrtent machines. As a board contains hundreds of surface
the optimal solution. This means that a significantly betmounted components in different shapes, sizes, and pat-
ter optimal solution, about which the user knows nothingterns, different placement machines in the line are installed
may exist. Given a choice, the user would probably alway® cope with different components. The line efficiency de-
choose the optimal solution provided that it can be obtaingeends on the combination of the machine types. Due to the
in a reasonable time. costly placement machines, the optimization of the assem-
This paper challenges the opinion that the optimal sdly process can significantly increase the competitiveness
lution is too difficult to compute. An algorithm that takesOf the production.
advantage of the special properties of the minimax approx-
imation optimal allocation problem is developed. This op-
timal algorithm is much faster than the general integer pro- Many factors affect the efficiency of the PCB assem-
gramming approach mentioned above. The algorithm prdly, namely customer orders [1], component allocation [2],
duces, in most practical cases, the optimal solution in RCB grouping [3], component sequence [4], and feeder ar-
time that is similar to the time needed for near-optimatangement [5]. Different algorithms have been developed
methods. Because of its exponential nature, it will ofo optimize different factors in PCB assembly [6], [7]). The
course fail in the cases when the number of variables genetic algorithm technique is one of the heuristic methods
large. But it should be noted that the algorithm practicallyhat has been used recently to find a near-optimal solution
always produces one or more suboptimal solutions whid].

106 Informatica27 (2003) 105-114 D.M. Kodek et al.

. _ Placement times;; for component typg | Setup
MachineM; 1] 2] 3] 4] 5] 6] 7] times,
1 03]0707|05| c0o| 00 11.0
2 07(12|15|16|15|15| 21| 147
3 23|38|35|35|27|33| 43| 147
Number of typej
components per boargl 324 | 37 | 12 5 7 5 4

Table 1: An example of a PCB assembly line with 3 different placement machines and 7 different component types per
board. The placemet timeg; for different components and machines and the setup tinas in seconds.

2 Formulation of the problem line has the best performance. The PCB assembly line cy-
cle timeT is formally defined as the maximum time needed
When a board is assembled on a production line they one of the machines/;, i = 1,2,---,m, to complete

board’s components are grouped and allocated to approphfie placement of the components allocated to it. Clearly,
ate placement machines in order to achieve a high outpilit¢ time interval between two finished boards coming out
of the line. The next machine can begin its tasks only aPf the assembly line is equal 6 which means that the
ter the previous machine has completed the placement &fmber of boards produced in a given time span is propor-
all components that were allocated to it. After the boaréional to1/7'. This number can be increased by allocating
passes through all the machines, the component placem#if components to the machines in such way tha re-
process is completed. It is clear that the slowest task diguced. A mathematical model that describes this situation
tates the performance of the assembly line. can now be given. o
There are two important differences between the tradi- SUPPOSe that there are non-identical placement ma-
tional assembly line problem and this PCB assembly linglinesM; in a PCB assembly line and that a board with
problem. First, unlike the traditional assembly line, thdYP€S Of components is to be assembled on this line. It takes
precedence of operations in the PCB assembly is not irfis UNits of time to place the component of typen a ma-
portant and can be ignored. The second difference cofifiN€ ;. In addition, each maching/; has a setup time
cerns the assembly times for the same component on dif- 1Nere are exactly; components of typg per board.
ferent machines. Due to various types and configuratiorld!® component allocation problem can be formulated as
of the placement machines, different machines have differ-
ent times for placement of the same kind of component. .
The components are usually of a surface mounted type, al- Topt = min,_max st Z b | (1)
though this is not important here. An example from Table 1
is used to make the problem easier to understand. This &bject to
ample is the same as the one used in [8] and will allow the
comparison of our optimal algorithm to the near-optimal i
One.p p g p Zl‘ij = Cj, j:1,2,...,n, (2)
A PCB assembly line with three different placement ma- =
chinesM;, M>, M5 and a board with seven types of com-

ponents is used in the example. The placemet tine®r The solution of this problem is the optimal cycle tiffig,,;

different components and machines are given in the Tabglﬁd the optimal allocation Variableégpt)_ The variable
1. If a machine cannot handle a particular type of compo- J

t its pl ttime i ianed to be infinia (The 1 gives the number of components of typthat are allo-
nent, s placement time 1S assigned to be in inite) € cated to machind/;. Constraints (2) ensure that all of the
infinity is used here for simplicity of notation only — it is

- 4 omponents will be allocated. The components are indivis-
replaced by a large positive number for computation. In a

o : . ble and (3) ensures that; are positive integers. Note that
dition to the time that is needed to place a component thege L o
. : : i; ands; are by definition positive
is also a setup time; for each of the machinesf;. The
machine needs this time every time a new board arrives for
its positioning and placement preparation. Finally, a totsB ~ Complexity of the problem
number of each type of a component per boards also
given. The problem (1)—(3) is a combination of assignment and
Obviously, there are many possible ways of allocatinffowshop scheduling problems [9]. It SP-complete for
the components to the placement machinéd;. Each of 2The timest;; ands; can be arbitrary positive real numbers. Itis easy

them leads to its own Cyde_ tinE. The question is how 4 reformulate the problem and changg andss; into arbitrary positive
to allocate the components in such a way that the assemliyegers. This does not change the complexity of the problem.

x;; > 0 and integer 3)

AN ALGORITHM FOR COMPUTING THE OPTIMAL ... Informatic27 (2003) 105-114 107

n > 2. Proving theNP-completness is no too difficult. indicesi that correspond to the known integers.. The
First, it is trivial to show that the problem is iR. Sec- subproblem’s variables can be formally described as
ond, itis possible to show that the well known PARTITION

problem can be polynomially transformed into (1)—(3) [10]. zloj=1,..k—1,i=1,....m

Since PARTITION isNP-complete, so is our problem. _ xfj., j=k, i€l 5
Atypical approach to solving this problem is to treat it s/ — Tij, j=k, i & I ®)

a general mixed integer linear programming problem. The Tij, j=k+1,...,n,i=1,...,m,

minimax problem (1)—(3) is reformulated as

min T wherek can be any of the indicels 2, . .., n. Notationa:{j
ziy; OP? is used to describe the variables that are already known in-

tegers. The remaining variables; are not yet known. The

n
Topt — si = Ztijxiﬂ' 20, i=12,....m, number of indices in the sé}, lies in the rangé to m — 2.

=1 (4) If there werem — 1 known integerss!, the constraint (2)
Z zij=cj, j=1,2,...,n, gives the remaining variable which contradicts the assump-
i1 tion that not all of the variables;;, are known. The index

z;; > 0 andinteger. k changes t& + 1 when allz;;, are known integers.

. . : Definition (5) assumes that a certain rule is used to in-
All algorithms that are capable of solving this problem op- . . . :
. . ; : troduce the constraints which force the variablgsto in-
timally work by starting with the noninteger problem where

the variablesr:. can be anv positive real number Ad_teger values. This rule is simple: For every index is

ditional constrgints are therz/ praduaII introduced i.nto thgecessary to constrain. to known integerSrfk for all
9 y 1,1 =1,2,...,m, beforek can change. The rule follows

problem and these constraints eventually force the varl:

: . . om the structure of constraints given by (2) and is needed
ablesz;; to integer values. Many instances of suitably re 9 y(2)

formulated subproblems of the form (4) must be solved bég denye the lower bound theorem. There is no problem
. L with this rule because the branch-and-bound method, on
fore the optimal solution is found.

An advantage of the formulation (4) is that generaYvhlch our algorithm is based, allows complete freedom of

. X . choosing the variable;; that is to be constrained next. The
mixed integer programming programs can be used to soly

. : indicesk can be selected in any order. A simple ascendin
it. Unfortunately, this advantage occurs at the expense y P 9

the computation time. The general programs use the si 8[derk =1,2,...,n, s used in (5). This also applies to
lex al (r))rithm to solv.e the sgub roblzmg The simplex arlf_he case when the problem is first reordered along the in-

piex alge prot o P dices; in a way that gives the fastest rate of lower bound

gorithm is very general and slow since it does not use aM¥crease. Such a reordering is used in our algorithm.

of the special properties of the minimax problem. All these To simplify th tation. let us first the k int
properties are lost if the original problem (1)—(3) is con- 0 simplify the notation, let us first use the known inte-

verted into the general problem. gersz; and redefing, into s; as
The fact that the general problem (4) is so slow has led

to the development of suboptimal heuristic algorithms that k

I .
search for a near-optimal solution. These algorithms are Si Ztijl’vﬁj , 1€
faster and often good enough. The difficulty is that a signif- s = ij (6)
i<_:ant|y better qptima_l solution may exist_ which these algo- s+ Ztijm{jv i T,
rithms do not find. It is the purpose of this paper to develop = ’

an optimal algorithm that does not use the generalized for-
mulation (4). The algorithm takes advantage of the Sped%‘imilarly
properties of the minimax problem (1)—(3). It avoids usinq ’
the simplex algorithm completely which leads to a much
faster solution.

the known integers?, (if any) are used to rede-
ine ¢ into ¢j, as

Cp = Cp — lelk (7
i€l

4 The lower bound theorem

The lower bound o, over all possible not yet known
The basic idea of our algorithm is to use a lower bound fovariablesz;; is the most important part of our algorithm.
T,,: as a tool that leads to the solution. This lower boundt is developed along the lines used in a related integer
must be computed for each of the subproblems that appdzglynomial minimax approximation problem that appears
within the branch-and-bound process. It must take into aé? a digital filter design [11], [12] and is given in the
count the fact that some of the subproblem’s variablgs following theorem.
are known integers. To derive it, let us assume that the sub-
problems’s variables;;,j = 1,2,...,k — 1, are known Theorem 1 Let T,,, be the minimum cycle time corre-
integers for alli. In addition, some, but not all, of the vari- sponding to the optimal solution of the problem (1)—(3) in
ablesz;;, may also be known integers. L&t be the set of which some of the variables are known integers defined by

108 Informatica27 (2003) 105-114

(5). ThenT,,, is bounded by

C‘]+Zi+pg+q‘7

11”

Tt >
opt 2 _Max i . (8)
= tii
where
_ : Lar
pj = Zk:lcr i:lI,%}.I.l.,'m (t”> ’
T?;e}r 9
¢; = ¢ min bak , Jj=k+1,....n
iZ 1y tij
Proof: Leth be a number that satisfies
s; + Ztmx” + Z tijrij, © € Iy
h Z Jj= k+1 (10)
8i + thxw + Zt”x”, i I .

j=1

Note thath is a lower bound fofl,,,; if we can prove that
(10) holds over all possible not yet known valugs. Us-
ing (6) eq. (10) is simplified

n
S;-f— E tijxig, 1€ Iy
=kt
n

8; =+ Ztijxij, 7 ¢ Ik .

Jj=k

h >

11)

It follows from (11) that variables;; can be expressed as

n

h & t;

T < ——-L =Y La, i€l j=k+1,..n
by iy r:k+1tij
7
h st tir _)
Tij < tfl — ﬁxm ig I, j=k,..n.
ij ij
r=k

ry_é j
] (12)
Adding all z;; by index: and using (2) and (7) gives

m m

g SZ Z*— IPILI B

r=k4+11=1 ” i1

r#]
j=k+1,....n

Tiky
(%]

(13)
and the lower bound fdt can now be written as

m

CJ+Z*+ IR

r=kt1i=1 tij i,
£
=1 lis
i=k+1,...,n.

(14)

D.M. Kodek et al.

All the terms in (14) are positive. This means tlais a
lower bound over all variables if the lowest possible values
of the terms containing variables, andzx;;, are used. The
variablesz;,. are subject to

m
Zﬂcw:cr, r=k+1,...,n

=1

(15)

Itis quite easy to see that the sum containingis bounded

by
tir
E E fxw>§ Cr_ llgln ()ij,
r=k+1i=1 U r=k+1 Zj (16)
r#j r#j

j=k+1,....n

since itis obvious that a minimum is obtained:jf. is given
the valuec,. for index: that corresponds to the lowest of the
factorst;, /t;; while all otherx;, are set to zero. Similarly,
the variables:;;, are subject to

> ik =} (17)
igly
and the sum containing;;, is bounded by
Lik Lik
S > domin (75) =g,
tzy i€l ti' (18)

igIy
ji=k+1,....n

Equations (16) and (18) are used in the definitions (9) and
this completes the proof. O

Note that the Theorem 2 does not include the lower
bound for the cas& = n. The following trivial lower
bound, which holds for alt, can be used in this case

Topt > I%E}X (st +tiwzir), k=1,...,n. (29)
1Lk
Note also that inde¥ = k was not used in the derivation

of the Theorem 1. The equivalent of (13) fpe= & is

T SR SE D Sy

i1y i1y r=k+1i&Iy tik

(20)

When I}, is not empty allx;,- in the sum oveii ¢ I; can

be zero and still satisfy (15). The lowest possible sum con-
taining x;,. is obviously zero in this case. This gives an
additional lower bound

(21)

This lower bound is almost always much lower than the
one given by (8). It can included in the algorithm to bring a
small decrease in computing time which is on the order of
1%.

AN ALGORITHM FOR COMPUTING THE OPTIMAL ... Informatic&27 (2003) 105-114 109

By choosingk = 0 one can use (8)—(9) to compute thek = n only, experiments show that it is usually faster if it
lower bound over all possible values of variables. Ap- is used for allk.
plying this to the example from the Table 1 giv€s,; > The lower boundl', 5 (k) (25) is the basis of our algo-
96.084. But there is more — the theorem plays a centralithm. It is a linear function of the variables;,i ¢ I,
role in our algorithm because it eliminates the need to usend, as mentioned before, a new constraint must be intro-
the simplex algorithm for solving the subproblems withinduced on one of them at each branch-and- bound iteration.
the branch-and-bound process. Let i.,i. ¢ I, be the index of the variable; ; that
is selected for constraining. Selection of the indgxs
. . simple — any of the indices, i ¢ I, can be used a&.
S Appllcatlon of the lower bound It is more difficult to find the value:; , that will be used
theorem in the branch-and-bound iteration to constrain the selected
variable to integers:] , which are the nearest lower and
The usefulness of the Theorem 1 is based on the followirigpper neighbours Olf* . Thez; ;, must be a number that
observation: The problem of finding the all-integer solutiorgives the lowest IOOSSIb|e lower boutig; (k) over all pos-
that gives the lowest cycle tini&,,; can be replaced by sible values of the not yet known variableg, i ¢ I, and
the problem of finding the all-integer solution that has theij,i = 1,...,m,j = k+1,...,n. Orin other words, the
lowest lower bound foff,,,;. Both approaches obviously z;, , must be at the global minimum @, 5 (k).
lead to the same solution sin@g,; equals its lower bound It is important to understand why; , must be at the
when all variables:;; are integers. global minimum of T,z (k). It is because our algorithm
This observation, however, is not enough. A new condses the property thatyz (k) is a linear function of the
straint must be introduced on one of the variablgs i ¢ variablesz;, and is therefore also convex. The convex
I, at each branch-and-bound iteration. This constraifffoperty is crucial for the success of our algorithm since
cannot be made on the basis of the Theorem 1 alone alignsures that every local optimum is also global. The al-

requires additional elaboration. gorithm uses this property by stopping the search along a
To see how the lower bound dependsigplet us define variable in the branch-and-bound process whgp (k) ex-
the parameter®y(j, k) as ceeds the current best soluti@h. This, however, can be
used only ifx} ; is such thatT, 5 (k) does not decrease
m when an arbitrary integer is added#d .. Thez? , at the
¢+ Z tij it Z tij global minimum certainly satisfies th%skconditioﬁ.
TL(4,k) = ! — o , (22) A great advantage of using the lower bound comes from
Z 1 the fact that the lower bourifl, 5 (k) in (25) depends only
= tij on the variableg:;;, i ¢ I, and is independent of the re-
maining variables;;, ¢ =1,...,m,j = k+1,...,n. This
wherej = k+1,...,n,andk = 1,...,n—1. TheTL(j,k) means that the number of variables is significantly reduced

are simply (14) rewritten in a shghtly different way. Thejn comparison with the general approach (4). Solution of
Theorem 1 lower bound (8) in which the variablgs are the minimax problem

left is now equal to

i i Tr(i, k Tr(j, k 26
Topt > jzﬁl_i%i(“mTL(j, k). (23) rg}{l max (%?f 1(d,)7j: max £,)) , (26)
This lower bound does not include the cdse- n. This ,
is easily corrected if (19) is included. To simplify notation Y win=0¢,, @20, (27)
we first define parametef (i, k) as il

gives the nonnegative number$, that give the global min-
imum of Ty, (k) for a givenk.

A complication arises wheh changes t& + 1 because
the solution of (26)—(27) fok + 1 depends not only on
., butalso onzj, (throughs;)). The problem is that},

T[(i, k) ZS;—Ftikl‘ik, k=1,...,n, (24)

and define the new lower boufld,, > T,z (k)

T15(k) = max (maXTI(z k), max Tr(j,k)

i¢ T G=k+1m : are not at the global minimum @f, 5 (k+1). Itis possible
(25) thatthe minimum of (26) fok+1 decreases if different;,
The T.p(k) are defined fork = 1,...,n (where are used. An error can occur if this is ignored because the

T.(j,n) = 0). They includeT; (i, k) for all k even if it algorithm stops the search along a variable if the minimum
is strictly needed only fok = n. There is a good reason is > T, when in fact a lower value fof, g (k + 1) exists.

for that because th&}; lower bound sometimes exceedslt is obvious that this error cannot occur if the minimum
the T, lower bound. This can occur when the values$;of Tpp(k+ 1) < Tpp(k).

differ by several orders of magnitude as is the case in the The following corrective procedure is used in the algo-
example from Table 1 where a large positiygis used in- rithm when the minimund’, 5 (k+1) > minimumI;z (k).
stead obo. Although the algorithm works iy is used for It consists of adding +1 and/or -1 to th¢ , that was used

110 Informatica27 (2003) 105-114 D.M. Kodek et al.

as the last constraint. Using the new, we simply re- Definitions of termsf, and ¢,; are somewhat tedious
computeT’, 5 (k) and solve again (26)—(27) fdr+ 1. If though they follow directly from (22) and (24)
max(TLp(k), Tre(k + 1)) decreases we continue in that
direction until it stops decreasing or until (27) is violated s};{(u) , v=1,....,m —1
(Tr(k) increases when the original , changes). The SR T tR(v)ka , v=m'
correctedr; , is a solution of

fv: Cor + Z

tR(m’)k ¢
min max (Tpp(k), Tre(k+1)) . (28) tR(m’)v’ /

Tick, Tik+1 ™ , v>Mm
Itis used to replace the original and this eliminates the pos- Z_:l o’
sibility of error. Note that it is not necessary to correct "= (34)

the remaining variables!, even if they were not derived
from the global minimum off ',z (k + 1). This is because
the branch-and-bound process ensures that all value's of

trak if i=v, 0if i £v, v=1,...,m —1
—tR(m"k 5 i=1,..m -1, v=m
bRk _ TROOK

/

will be tried as long as thelf, 5 (k) is lower thanT;,. Ad- Boi=¢ 1o, 1
ditional details about the implementation of (28) are given Rlvl ROV i1 om/ =1, 0> m’
in step 6 of the algorithm in section 7. Z
The minimax problem (26)—(27) must be solved many = trv
times within the branch-and-bound process and it is ex- (35)
tremely important to have an efficient method that giveforv=1,...,n"andi =1,...,m’' — 1.

its solution. Most of the computing time in our algorithm The process of solving (32)—(33) is simplified greatly

is spent on solving this problem. The method that is useay the theorem that gives the necessary and sufficient

to solve it is worth a detailed description. conditions for the variables*R(i wi=1,...,m —1,that
minimize (32). The general version of the theorem is given

. . . in [15]. It is repeated here in the form that applies to our
6 Solving the discrete linear problem.

minimax problem
Theorem 2The variableszr}‘%(i)k,i =1,....,m' —1, are
The number of variables;;, in (26)—(27) is equal to the the optimal solution of the minimax problem (32)—(33) if
number of indices, i ¢ I;. Letm’,1 < m’ < m, be this and only if the following holds

number and lefk(i),i = 1,...,m/, be the indices not in
I.. Equation (26) contains:’ terms7; andn — k terms
Ty, The total number of terms’ is equal to Hgn I I Z Pyi(zi — TRaw) =0, (36)
n=n+m'—k, m <n' <n+m. (29)
over all numbers;,i = 1,...,m' — 1, that satisfy
It helps to rewrite (26) using a new index
'—1
. /
min max (max T7(R(v), k), Z 2 < ¢, 2 >0. (37)
TR(i)k v=1,....,m’ (30) i—1
ma: T (v, k) |, i o
1):m’+1}f-<.,n' i)> The setV,,..(z*) contains those of the indicesv =
, , ... 1,...,n/, at which the maximum is obtained. That is
wherev’ = v + k — m/. Because of the sum constraint in
(27) there are onlyn’ — 1 independent variables; the’-th 1
variable can be expressed as max (fot Z ‘I)m‘x*R(i)k) _
m’—1 _1 i=1 (38)
’ = Z X (31) — * *
xR(m k Ck R(i fv + Z (I)UixR(i)k7 v e ‘/’rnaw(gj)
i=1
The minimax problem (26)—(27) can now be reformulated
into a more general form Only the indices), v € Vi,a (27), that give the extremal
values of the function (38) are used in the Theorem 2. The
) -1 theorem says thaty, .., is the optimal solution if there are
min max | f, + Z Quizrir | > (32) no numbers; for Wh|ch (36) is lower than zero. To show
TRk v=1,...,n .
i=1 how this can be used to solve (32)—(33) let us assume that
- we have a set of numbeﬁ%(Nk and would like to check
Z TRk < e T > 0. (33) if they are optimal. Depending dW,, .. (*) and®,,; there

are two mutually exclusive cases:

AN ALGORITHM FOR COMPUTING THE OPTIMAL ... Informatic27 (2003) 105-114 111

1. The setV,, .. (z*) contains at least two indices and wheref, are defined as
vo for which the following holds

m’—1
(I)vliq)vgi <0, 1= 1,...,m’—1. (39) f’ll) :fv+ Z (I)mxﬂé(z)k’ v = 17_._’77//. (44)
Itis easy to see that the numbeygshat give (36) lower ii;ill

than zero cannot exist. This is because of the opposite
signs of®,, ; and®,,,; for all i. Any set of numbers; Each of the equations (43) gives a possible new value for
that is different frormf}%(i)k makes (36) greater than x}}(mk- The one that is the least different from the current
zero for at least = v, or v = v9. Thus, according to value must be used because the8gt.(<*) changes at
the Theorem 27,), are optimal. that value. The newy,; \, must of course also satisfy
(33). Replacing:cj;z(il),~c with the new value gives a new
solution x*R(i)k,i = 1,...,m — 1, for which the whole
process is repeated until the optimal solution is found.
Selecting a good starting solution is important because
it reduces the number of iterations. Our algorithm uses a
solution that is found by choosingjw)k = ¢, (the re-
Dy, i®yyi > 0,0 €1y, 1,02 € Vipaz (z*), (40) mainingm*R(i)k are zero) fori = 1,...,m’/, and comput-
ing the lower bound’;, 5 (k) for each of them. The choice
holds for any pair of indices from Vi, (2%). OF that gives the lowest, 5 (k) is the starting solution. This
in other words, for each € I, the ,; are nonzero starting solution is often optimal; when it is not, it usually
and have the same signs for alE V... (z"). Letus takes only one or two iterations to find the optimum. Note
assume that there are numbersi € I, that satisfy that the search for the optima, ;. is not necessary if the
(37) and give startingT’, 5 (k) is lower than the lower bound (21). In such
” N cases the algorithm simply uses the starting solution.
Zq)”izi < Zq)”xR(”’“’ V€ Vinas (27), (41) Having the optimal variables:, .. i = 1,...,m’' — 1,
i€l i€l . . LR
it remains to select the one that will be used as the new
These numbers, together with= z ;). for i ¢ I,,, constraint. This is done by computing the products
obviously make (36) lower than zero. The numbers

2. The setV,,q,(z*) does not contain two indices;
and vy for which (39) holds (this is always true if
Vinaz (™) contains only one index). This means that
there exists a set of indicdg, containing at least one
index¢, for which

(s, @re therefore not optimal if such exist. They LR TRk 8= Lo,m, (45)
exist almost always — the only exception occurs if the
following holds where (31) is used to compute the remaining variable
TR (m ke The indexR(i) that gives the highest product is
Z @Uix}(i)k = ngin Z Dz, (42) selected as.. The reasons for this choice is obvious: The
icl, Y oiel, highest of products (45) is most likely to give the largest

] increase of the lower bourit}, 5 (k).
for somev, v € V0, (2*). Itis clear that (41) cannot

be satisfied in this case because #fjg,,, sum is al-
ready the lowest possible. The lowest possible sum i
(42) is easy to compute by using = 0 for &,; > 0
andz; = ¢ for the most negative ob,; < 0. This
means that it is also easy to check:i), are opti-
mal.

7 The algorithm

The algorithm is based on the well known branch-and-
bound method which is described in detail in many text-
books (see, for example, [13] or [14]). We assume that the
Using (39)—(42) it becomes straightforward to solve (32)+eader is familiar with this method and continue with the
(33). A starting solution for}, ., is selected and checked description of the algorithm.

as described above. If it is found optimal, we have a solu- Animportant part of the branch-and-bound method is the
tion. If not, one of the variables*R(il)k, 11 € I,,istried; if branch-and-bound tree. Each node in the tree represents a
it can change towards zero (if,;, > 0) or towardsc), (if subproblem that has some of the variables constrained to
®,;, < 0) without violating (33), it leads to an improved integers. Information that is stored at each node must con-
solution. Itis ignored otherwise and a new variable is triedain the following: The node’s lower bourid, 5 (k), index

The setl, always contains at least one indethat leads to % the size of sef, (it is equal torm — m’), the indices:

an improved solution. in I, integer variable&{j,j = 1,...,k, and the nonin-
The new value Ofxf%(il)k is computed by trying all teger variaplevfck that will be used_a_s the next. copstraint
01,01 ¢ Vinas (z*), and solving (together with the index.). The efficient organization of
the tree is important. It does not, however, influence the
fo, + Dyyis TRi k= i+ Dyiy TR0y ks V€ Vinaa (27), results of the algorithm and will not be discussed here. The

(43) algorithm is described in the following steps:

Informatica27 (2003) 105-114

1. Setk = 0 and use (8)—(9) to compute

(46)

forj =1,2,...,m. Sortthe lower boundsy(4,0) in

the ascending order. The problem parametgrand

c; are reordered accordingly. It is assumed from here
on thatj = 1 corresponds to the lowe®y,(j,0), j =

2 to the next highefl',(4,0), and so on. The reasons
for this reformulation of the problem are simple: We
wish to eliminate the indiceg that give the lowest
contribution to the total lower bound; 5 (k) and at
the same time keep the indices that give the highest
contribution to the total lower bound. Several other
strategies for selecting the indicgsvere tested; none
performed better over a large class of problems.

. Set the current best solutidh, to oo (a large posi-
tive number). The corresponding variabls%’) can

be set to anything — they will be replaced by one
of the solutions quickly. The index indicates that

T, is an upper bound off,,;. The alternative is to
use some heuristic construction and compute a near-
optimal starting solutioff;,. We found that this is not
really necessary because the algorithm quickly pro-
duces good near-optimal solutions.

. Create the root node. This is done by making=

1, m’ = m (this makes the s, empty), and solv-
ing the problem (32)—(33) as described by (36)—(45).
The resulting information is stored in the branch-and-

bound tree. Initialize the branching counférto zero. 6.

. Choose the branching node by searching through the
nodes of the branch-and-bound tree. Go to step 8 if
no nodes withl', 5 (k) < T,, are found or if the tree is
empty. Add 1 to the branching countdtand choose
the branching node according to the following rule: If
N is odd, choose the node with the low&5is (k),
otherwise choose only among the nodes that contain
the largest number of integer variableg and select
the one that has the lowe®}, 5 (k). This branching
strategy is a combination of tHewest lower bound
and depth firststrategies and is used to get many of
the near-optimal solutions as fast as possible. This is
especially important for large problems with several
hundred variables;;.

. Two subproblems are created from the branching node
by fixing the node’s variable; , to integers

inCk = |27], (47)
wig = lap,) +1,

where|z; , | denotes the nearest lower integerfo, .

The integersx{ck must of course conform to (27). If

D.M. Kodek et al.

xfk in (48) does not, discard this subproblem (sub-
problem (47) is never discarded becaugeg satisfies
(33)). The number of noninteger variableg; is re-
duced by 1
m —m' —1. (49)

If m’ > 2 go to step 6. Otherwise there is only one
noninteger variable:;; left. Its integer value is al-
ready determined because (27) gives

@)+ T = (50)
and m{k is easily computed. All variables;; are
known integerse/,, i = 1,2,...,m. Because of this
the indexk is incremented as described by the defini-
tion (5)

ke k41, (51)

The new setl;, is made emptyr¢’ = m). If k <

n, go to step 6. Otherwise we have a case where all
of the subproblem’s variables; are integer. This is

a complete integer solutioand the cycle timéel" is
simply computed as

T= (52)

n
I
i=1,2,...,m Si Z tijlij
j=1
If T < T,, we have a new best solution; the current
T, is set toT" and the current best solutimﬁ;) is re-

placed byx{j. The branch-and-bound tree is searched
and all nodes wittl', (k) > T, are removed from
the tree. Go to step 7.

Each of the non-discarded subproblems from step 5 is
solved. The already known integers are taken into ac-
count by computing; andcj, using (6) and (7). Equa-
tions (34) and (35) are used next to compyiiteand

®,; and the problem (32)—(33) is solved as described
by (36)—(45). The results ar (k) andz; ;. If
Trp(k) > T, ignore this subproblem since it obvi-
ously cannot lead to a solution that is better than the
current bestr,,. Otherwise ifm’ = 2 andk < n

do the corrective procedure (28) and replagg and
T1,5(k) with the new values. The newly computed
Ty, (k) will in most cases be greater than that of the
branching node. This growth is not monotone and it
is possible that the neW 5 (k) is lower. Since the
lower bound cannot decrease we use the branching
node’sT; 5 (k) as the subproblem®,z (k) in such
cases. The subproblem information containirjg,

and Tz (k) is stored as a new node in the branch-
and-bound tree.

The subproblem in the branching node from step 4 is
modified (the root node is an exception — it is simply

removed from the branch-and-bound tree and we go
to step 4). The branching subproblem is modified by

AN ALGORITHM FOR COMPUTING THE OPTIMAL ... Informatic27 (2003) 105-114 113

. ' Allocation z;; of components | Assembly time
Machineid; 1] 2] 3]4[5]6]7] onmachinel,
1 2741 0| 2|5|0|0]|0 97.1
2 50| 37| 2/0|{0|0|0 97.1
3 0| 0| 8/0|7|5|4 95.3
Number of typej
components per boargl 324 | 37 | 12| 5|7 | 5| 4

Table 2: One of the 10 equivalent optimal solutions of the cycle time problem given in example Table 1. The solution was
obtained with the algorithm described in this paper.

changing the integer variahi€, that was created last. than a second to find all optimal solutions. This time in-
The modification is equal to creases to almost 2 hours if an additional machine is added
(giving a problem witht x 20 = 80 variablest;;). It should
be noted, however, that for this example a suboptimal solu-
tion that is within 0.1% of the optimum was found after less
than 0.1 second. This behaviour is typical for the branch-
This of course means that each node in the brancnd-bound based algorithms where a great amount of time
and-bound tree must also contain information aboyt often needed to prove the optimality of a solution that
the integer variable that was created last and abowfas found early in the process.
the way it was created (either by (47) or (48)). The The algorithm was also tested on problems with a much
branChing node is removed from the tree if the ne\l]/arger number of Variab|esij_ Cases with up to 10 ma-
apy, < 0orif 2j, > ¢, and we go to step 4. Oth- chines and up to 100 different component types per board
erwise the modified subproblem is solved exactly agiving up to 1000 variables; ;) were tried. Because of the
in step 6. Note that andm’ remain unchanged and exponential nature of the algorithm the optimal solution is
that this subproblem can never be@mplete integer not found and/or proved optimal in a reasonable computing
solution If T, (k) < T, the modified subproblem is time for problems this large. But the algorithm is useful
stored back into the tree, otherwise it is removed fror@ven in such cases — the branching strategy ensures that
the tree. Go to step 4. many good near-optimal solution are obtained. In addition,
o .) the algorithm gives a global lower bound on the optimal
8. The current best solution is the optimal solution. Thgo|ytion which allows the user to determine how close to
optimal cycle timel’,,,, is equal tol’, and the optimal {he pest possible solution a near-optimal solution is. The
variablesgﬁ?”“ are equal tong;‘). Stop. global lower bound on the optimal solution is the lowest of
the T,z (k) in the branch-and-bound tree and is obtained
in step 4 of the algorithm. It can be used to decide if a
8 Experimental results and near-optimal solution is sufficiently close to the optimum
conclusions and also if it is worth trying the longer computing time.

I { zf, — 1if f, was created by (47) (53)

Ty, zl, + 1 if 2}, was created by (48)

The algorithm was implemented in a program and teSteAcknowledgment
on many different cases. It is typical for the problem (1)—

(3) that there are often many equivalent optimal solutionSse 4thors would like to thank Prof. B. Vilfan for provid-

One of the 10 optimal solutions of the example given in thgang the formal proof ofNP-completeness for the problem
Table 1 is presented in the Table 2. It took less than O.O(J_L)_(3)_

seconds of computer time (on a 2.4 GHz Pentium 4) to find
all 10 optimal solutions.

The computing time depends not only on the number qR eferences
variablesz;; but also on the problem parameteys and
especiallys;. The lower values of; obviously make the [1] P, Ji, Y.S. Wong, H.T. Loh, L.C. Lee, “SMT production
search space smaller and reduce the computation time. Ex- scheduling: A generalized transportation approach,”
periments have shown that for the problem parameters sim- |nternational Journal of Production Researctol.32
ilar to those in the Table 1 all optimal solutions are typically (10), pp.2323-2333, 1994.
found within a minute of computing time if the number of
variablesz;; is 60 or fewer. For example, the 3-maching2] J.C Ammons, M. Carlyle, L. Cranmer, G. Depuy, K.
case from the Table 1 in which the number of different Ellis, L.F. Mcginnis, C.A. Tovey, H. Xu, “Compo-
component types per board is increased to 20, takes less nent allocation to balance workload in printed circuit

114 Informatica27 (2003) 105-114

card assembly systemllE Transactions vol.29 (4),
pp.265-275, 1997.

[3] A.Schtub, O.Z. Maimon, “Role of similarity measures
in PCB grouping procedurelhternational Journal of
Production Researctvol.30 (5), pp.973-983, 1992.

[4] J. Sohn, S. Park, “Efficient operation of a surface
mounting machine with a multihead turretfiterna-
tional Journal of Production Researchvol.34 (4),
pp.1131-1143, 1996.

[5] Z. Ji, M.C. Leu, H. Wong, “Application of linear as-
signment model for planning of robotic printed cir-
cuit board assemblyASME Manufacturing Processes
and Material Challenges in Microelectronics Packag-
ing, vol.ADM-v131/EEP-v1, pp.35-41, 1991.

[6] M. Sadiqg, T.L. Landers, G. Taylor, “A heuristic al-
gorithm for minimizing total production time for a

sequence of jobs on a surface mount placement ma-

chine,” International Journal of Production Research
vol.31 (6), pp.1327-1341, 1993.

[7]1 Y.D. Kim, H.G. Lim, M.W. Park, “Search heuristics
for a flowshop scheduling problem in a printed circuit
board assembly proces&Uuropean Journal of Opera-
tional Researchvol.91 (1), pp.124-143, 1996.

[8] P.Ji, M.T. Sze, W.B. Lee, “A genetic algorithm of de-
termining cycle time for printed circuit board assem-
bly lines,” European Journal of Operational Reseaych
vol.128 (3), pp.175-184, 2001.

[9] P. Brucker, “Scheduling algorithms,” Second Ed.,
Springer, pp.274-307, 1998.

[10] B. Vilfan, “NP-completeness of a certain scheduling
problem,” (in Slovenian)nternal report,University of
Ljubljana, Faculty of Computer and Information Sci-
ence, June 2002.

[11] D.M. Kodek, “Atheoretical limit for finite wordlength
FIR digital filters,” Proc. of the 1998 CISS Conference
vol. Il, pp.836—-841, Princeton, March 20-22, 1998.

[12] D.M. Kodek, “An approximation error lower bound
for integer polynomial minimax approximatiorglec-
trotechnical Revieywol.69 (5), pp.266—272, 2002.

[13] C.H. Papadimitrou and K. SteiglitZ?Combinatorial
optimization,” Prentice-Hall, pp.433—-453, 1982.

[14] E. Horowitz, S. SahnifFundamentals of computer
algorithms,” Computer Science Press, pp.370-421,
1978.

[15] V.F. Demyanov, V.N MalozemoV,Introduction to
minimax,’ Dover, pp.113-115, 1990.

D.M. Kodek et al.

	Informatica_2003_1 15
	Informatica_2003_1 16
	Informatica_2003_1 17
	Informatica_2003_1 18
	Informatica_2003_1 19
	Informatica_2003_1 20
	Informatica_2003_1 21
	Informatica_2003_1 22
	Informatica_2003_1 23
	Informatica_2003_1 24

